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LIST OF SYMBOLS *

speed of sound in air

cross-sectional area of belt (Section 2.3), tread area function (Sections &
and 5)

cross-sectional area of cords in beit

function describing tread area {Sections 4 and 5)

An’ Bn, Cn, Dn coefficients of Fourier series describing tire shape

El

flg, ~ o)
F (o)

G
G(rim)
Cr

h

His - 9))
kr, k'

km kt

{

phase velocity in belt

tread depth

radial end tangential damping, per unit length

rnagnitude of determinant

coefficients of .inverted matrix (Section 2}

elastic modulus of rubber

elastic moduius of steel

extensional stiffness of tread and belts

bending stiffness of tread and belts

function defining radicl displacement at @ due to unit force at @
force associated with tread/road interface,

geometric amplification factor (Section 3)

Green's function (Section 4)

shear modulus of rubber

distance from neutral surface of bending to center of tread
unit step function {Section 4)

radigl and tangential bedding coefficients {Section 2)

wave number in air and tire {Section 4)

tread pitch fength

*  Where the same symbol is used for several different items, the corresponding sections
or equations are indicated.
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tread block length

b

Iv tread void length

n circumferential mode number

N number of belt plies

p acoustic pressure

Prs Py radial and tangential external pressures

Prg? Pret Prs? Prc sine and cosine integrals of P and Py

P point force (Section 2); average contact force pressure (Section 4)

Q resonant Q factor; inverse of loss factor

~

vector from source to receiver; |T'°] =r

R local radius of curvature

Ro unperturbed radius of tire

s circumferential distance coordinate, measured from contact patch edge
S5 coordinate on pavement; see Equations (48) through (50)
5 surface area

t time

t thickness of belt ply

t sidewall thickness

t tread thickness

T0 tension in belt due to inflation pressure

U speed of tire

Yy normai velocity

v tread void volume

v,W tangential and radial displacements of belt

wg width of belt

W, effective width of fread

W, width of treod void

amplitude of harmonic component of radial displacement w

v
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Cartesian coordinates re: contact patch center
shape of tread groove

shape of i'th groove in full iread pattern
pavement texture profile

average vertical compression of rubber

cord angle (Section 2,3)

matrix coefficients (Section 2.2)

5@ ~ ¢I) Dirac delta function (Sectin 4)
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flow blockage factor (Section 3)

load distribution due to pavement texture
damping coefficient

angle between sidewail and belt; see Figure 7
loca!l belt curvature

curvature of unperturbed belt = I/Ro

mass density {per unit length) of tread and belts
density of alr

circumferential coordinate

circumferential coardinate fixed to tire; correspondsto 8 at t =0

angle re: contaet patch center

angle from center to edge of contact patch
radial frequency

angular velocity of tire

time derivative

spatial derivative; either 8/2¢ or 3/8s
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1.0 INTRODUCTION

The acoustic environment near high-speed roads Is currently dominated by noise
from heavy truek tires. At highway speeds of 55 mph, peak A-weighted passby levels
associated with the tires of o 5-axle truck-irailer set are on the order of 85 ciB.I This is
2 to 3 dB higher than the noise levels associated with the engine and driveline components
of trucks in use before the promulgation of truck noise regulations,” and substantially
higher than driveline noise levels of new trucks complying with current regulations, To
achieve the full benefits of current and future truck noise requiations at highway speeds,
1t is necessary to reduce tire levels by about 10 dB, to the order of 75 dB for heavy trucks.
This corresponds to a level of between 68 to 70 dB for a 2-axle truck as used in the
SAE J5703 test procedure — the most commeonly used procedure for measuring truck tire

noise,

Heavy truck tires in common use today exhibit noise levels that range from 73 to
85 dB as measured under SAE J57a test conditions, with each tire exhibiting a range of
2 to 4 dB depending on pavement type and state of wear, If attention is limited to modern
design, on-highway tires, i.e., those with radial ply and/or rib to moderately aggressive
tread potterns, the noise level range is 73 to 80 dB. Thus there hos been some useful
reduction associated with tire evolution, It has been shown that, by choosing from fires
avallable today, economically beneficial selections can be made with noise levels in the
7310 75 dB rqnge.ﬂ This effectively reduces the gap between typical levels of several
years ago and the level of 70 dB noted above.

To a certain degree, the evolutionary quieting of tires has occurred fortuitously as a
result of the trends toward radial-ply carcass construction and less aggressive tread
patterns. The design of tires specifically for noise control has been |imited to tread
randomization to eliminate pure 1ones,5 avoiding designs with pocket-tread voids, and the
development of drastically different designs with significantly reduced road performance,
Much of the reduction has come from a cut-and-try approach, without a full understanding
of the noise-generating mechanisms, This approach cannot be expected to meet specific

noise reduction goals on a definite timetable,

The most practical method of reducing tire noise levels is to apply o fundamental
understanding of the noise-generation mechanisms to design tire medifications, The
results of recent research studles have provided o better wunderstanding of noise
mechanisms, to the point where analytical noise models can be related to overall tire
parameters. In the present study, a set of analytic models has been prepared which place
the major noise mechanisms In a unified format with tire structural properties. This

unified format permits the inclusion of noise as one more perameter in tire design, ond

I-1




provides for evaluation of trade-offs between noise end performance. The noise
mechanisms considered are air pumping from tread voids and carcass vibration radiation,
These are the mechanisms identified as dominant in a previous study performed for EPA,
during which physical models were formulu'red.7 These models have been extended and
refined in the present study. The effects of pavement texture have been included.

The purpose of this report is fo document the formulation of a set of noise models
and to identify potential low-noise designs by exercising these models. The foundation for
the noise models is a model for the dynamic behavior of a fire carcass. Limiting the
scope to radial tires (expected to deminate the tire markel in the future), a set of thin-
shell equations developed by Bohm8 has been used. These equations and their solutions
are described in Section 2,0, Section 3.0 presents a mode! for air purnping. The air
pumping model used here is based on the physical behavior identified in Reference 7, and
treats the motion of tread elements on a carcass whose shape is governed by Bohm's
equations. The vibrational excitation of a treaded tire on a paved surface, and subsequent
radiation of sound, is treated in Section 4.0, The force input al the tire/road interface is
governed by the tread geometry and interfacial pressure. Detailed variations due %o road
texture are handled by an adaptation of Nilsson's linear excitation model.9 The adaptation
utilized here includes the extended reaction of the carcass. The model presented here is
physically consistent with the tread impulse models widely used for tread pattern
randomization, but contains the important extension that it predicts the amplitude as well
as the spectral characteristics of the wvibration input. The most importont radiating
section of a radial tire hos experimentally been shown to be the tread area immediately
following the contact patch exit?’m Over this range, Bohm's equations reduce to the
elastic beam model successfully used by Eberhord1.|0 Accordingly, Eberhardt's radiation
calculation is incorporated in the set of models. An investigation of low-noise designs is

presented in Section 5.0,

Portions of the models identified above have been well validated; however, other
parts have not been and there has not been a full "end-to-end" validation of any tire noise
model. Accordingly, an experimental phase is incorporated in a later 1ask of the current
program. Specially designed tires will be utilized to validate the models and to test low-
noise design concepts. The investigation of low-noise designs presented in Section 5,0

utilizes the noise models in their present form,

The noise models are of a level of complexity which requires computer Implementa-
tion. Formal documentation before experimental validation would be premature. How-
ever, to provide an overview as to the nature and extent of the model system, a brief
discussion of the computer implementation of the models is included in each appropriate

section.
|-2
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2.0 EQUATIONS OF MOTION OF A TIRE
2.1 Thin Shell Equations

The modern radial ply tire typically consists of one or two carcass plies whose cords
run from bead 1o bead at an angle 90° to the circumferential direction* {running radially
outward in the sidewall, hence the name} plus several belt plies, limited to the tread areq,
whose cords run at much smaller angles, typically between 15% 10 25°. Some designs
include a first ply belt ot large cord angle to provide a transition, but the overall effect is
common to all radial tires: a reinforced belt whose strength is primarily circumferential
Iying on a relatively flexible transverse carcass. The belt and the sidewall properties are
substantially different, end their behavior {other than the constraint that they are
connected at the shoulder) is independent. This Is in contrast te bigs-ply tires, where
equal numbers of plies at oblique angles form a continuous structure with similar
properties in the sidewall and tread areas. Following experimental evidence that the
radial tire belt behaves os a ring on an elastic foundation, BohmB derived the following set
of linearized equations for the tangential and radial displocements of the belt:

B 20@ W+ 20 20~ v) - E5 W)
Ra (1a)

+ kiv - dt v + ¥) = Py (o,1)

p(# 4 2060 -9+ 02 (W - 2v - s RY))

. T
+ _E_ﬁ_\z v o+ w) o+ E-L WY+ 2w W) —-—-92 (w + w™ {Ib)
Ro o Ro

+ krw + dr(w' Qo+ W= pr(c,t)

Figure | shows the coordinate system used. A complete list of symbols is presented at the
beginning of this report. A note on the nomenclature of the belt stiffnesses is in order.
Equations (1) are written as if for a homogeneous sheil with elosticity £, cross-sectional
area A and moment of inertia |. A tire is a heterogeneous structure. To avoid confusion
between component material praperties and quantities in Equations {1), the guantities EA
and El will each be treated as single entities, the extensional and bending stiffnesses,

respectively.

* Cord ongles in a tire are measured relative to the circumferential direction. This
c8nventign is used in this report. Additionally, angles may be cited as values from
0 to 90™ with a left or right lay. The sense of the lay follows the same convention as
the sense of a screw thread.
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Equations () are two-dimensional thin shell equations., They include membrane
stresses, bending stresses, and radial and tangential momentum. The shell rests on an
elastic damped medium whose radial and tangential stiffness and damping are given by
kr, kt and dr' dt’ respectively. Initial tension, To’ is due to inflation pressure. The tire
Is spinning, so that the inertia terms include Corjolis and centripital components. The
displacements v and w are in an Eulerian frame (i.e., as seen by an observer translating
but not rotating with the tire} so that substantial derivatives appear in place of time
derivative, e.g., d_(¥ + Qw') rather than d, & for the radial damping.

In the present study, two limits of Equations (|} are of interest:

1. The steady state, which gives the stationary shape of a moving tire under load.

This is the initial point about which noise generation is a perturbation.

2, The vibratory motion at high frequencies, corresponding to the audio frequency

range.

The high-frequency vibration is oddressed in Section 4,0, The remainder of this

section treats the calculation of the stationary shope of a tire.

2.2 Staticnary Shape of a Tire

Setting all time derivatives equal 1o zero, Equations (1) become

(% - ,uﬂz) v — d‘t ov' + (pnz - kf)v

Ro (20)
+ (%’% -2 pﬂz) w o= -pf(p)
(2]
E—Iq w4 2 ('EE + u92 - L)f) w' o+ (d Q) w
R R Rs
EA  El o 2 2
+(‘?*“‘H“’z‘+kr~““ w = (p2IR, (2b)
RO RD RO
EA 2
+(Rg -2u9)v'=pr(¢)

The equations have been reordered so as to group similar orders of derivotive together.
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Since Equations (2) are a linear system over a closed circumference, it is natural to

seek solutions of the form

m\
v = z (An sinng + Bn cos n )
n=o @)
o
w = Z (Cn sihng + Dn cos ng)
n=o

The method of sclution is to substitute Equations (3) into (2), multiply each equation by
sinme or cas me, then integrate aver one circumference, Noting the orthogonality of
the harmenic functions, the following are obtained for the sine and cesine integrations of

each equation for n > I

EA 2\ 2 2
[(Ez.-m)n +(kt—pﬂ)J A, = d, @nB_

Q
2 {(4q)
+(%‘%*2pﬂz)nDn=7:;- f Py sinne de
[4] [s]
EA 2\ 2 2
dtRnAn-r‘i(—F-{—z—,uﬂ)n +(kt—pQ)JBn
° (4b)
2
_(%Az_zpnz)n Cn=-7|7 f py cos ng do
o )
EA 2 El 4 _ /2El 2 _Toy 2
_(—-Z—Zpﬂ)an+-—R—4n-(R + pf -—E-z)n
o o o o
- T
EA El o 2
+ + - - HQ +|<) C {4c)
(22 - - )]
o o o
2w
! .
"dr an Dn='?r"f P, sinng do
[+]
2-4
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T
(—E-—J;-—2;;1!22)nﬁ\n+dr an C o+ [—E% nq-(—z%:- +p92———9)n2

R R Rq R2
(hd)
T 27
+(%+£‘H ———02 - ps‘zz-a- kr)] Dn = —?17 f P, cosnp de
R Ro Ro )
The following are obtained for the cosine integrals when n = 0:
2
2 [
(k, - u2°) B, = == f p, do (50)
)
I 2w
-E—‘%+%.——g—p92+kr)Do=p92Ro+IW‘/’ p. de  (5b)
R R R
o ] ) 0
Equations {#) may be written in matrix form:
[ @ ~B 0 v ] ’-An- -pfs-
8 o =Y 0 B p
. n - tc ()
0 =Y [V} -€ n Prs
L 0 € ¢ | | D | [ Pre

where @, 8, ¥, 6, € aredefinedin Table | and correspond to the coefficients seen in
Equations (4), and Pts; etc,, denote the integrals (1/m) ,/0-27" py sinng de, etc. Note
that these quantlties are all functions of n. Equation (6} may be inverted to glve the

coefficients:

(AT [E F G H ] [Py |
n ) e -F E -H G Pre
c. | el ja w1 . P @
| D, | [ H G -3 | Pre |
where E = a(6? + €%} - 672
Fo= ple2, ¢y, cv?
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Table |

Matrix Coefficients For Equation (6)

o = (% - pﬂz) n? . (k; - uad)

o

o]
s - El 4_[2E] a2 _ o 2
" RE RETH R2
[s] o] [o]
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(86 + axe)y

H=('}’2—a6+ﬁf)7
D= 6@+ 59 - av?
J = E(cw2+ﬂz)+ B‘YZ

|det|= (ﬂz2 + Bz) (62 + 62) + 272 (Be - abd) + v4

Provided |det| # 0, Equations {5) and (7) give explicit solutions for the coefficients as

a function of external pressure Pr and Py

The possibility of |det| = 0 is of interest. The expression for ]det' may be
rearranged as
2%, 252, o2

IdeTl = (a6 - ¥ + A7 67 + v €2+32€2+2‘1’2ﬂ€ (8)

Noting that 8= d an, e_d fn, and that d and d cannot be negative, |det| must
always be posmve when fhere is damping. The mln:mum value of |det' occurs when
(eéd - v ) = 0; this corresponds to the presence of standing waves. Standing waves
occur at higher speeds then are of inferest here. Previous calculations of standing waves
from Bohm's equations, e.g., References 8 and |1, have shown good agreement with

experiment,

Equations (5) and (7) provide an explicit solution for a given pressure distribution.
However, the known boundary conditions for a rolling tire are that the tire is flat against
the road within the contact patch, and Pp = Py = i outside the contact pateh, The
solution is no longer explicit, and in fact is not unique since the tangential pressure
depends on details of the treadfroad frictional interaction which have not been con-
sidered. These difficulties have been handled in the present study by (a) assuming an
explicit relation between py and p. to resolve the indeterminacy, and (b) using an
interative scheme to obtain a flat surface in the contact patch,

Published datolz show that the tire/road interfacial pressures are approximately as
sketched in Figure 2. The radial pressure is roughly uniform, with a slight bias toward the
leading edge and some transition to zero at the edges. The tangential pressure exhibits a
linear wvariation through the central part of the contact patch, with peak values
corresponding to the vertical pressure times the coefficient of friction of the tread/road
interface. A first approximation of the tangential pressure would be a ramp times the

radial pressure:

L .
py (#) = Y Pe{®), ~a0., < Ap s Agg, R ¢

where A9 is measured from the center of the contact patch.

2-7
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In Sections 3.0 and 4.0,.it is shown that noise generation depends primarily on radial
motion w. [t is also found, through examination of the matrix elements G, H, |, J in
Equation (7), that p; has an influence on w which is one to two orders of magnitude less
than that of P Accordingly, Equation (%) has been adopted to approximate Py

An iterative method is used to satisfy the flatness condition in the coniact patch.
The caleulation is to some degree an inverse one, with contact patch length being the

input variable. The procedure consists of the following steps:

I, An initial Py is token to be equal to the inflation pressure within the contact

patch, and zero outside it.
2. The tire shape is computed fram Ppe

3. The horizontal ground plane is placed such that it intersects the lower of the
leading or trailing edge of the contact patch. The vertical height z of the tire
is computed at each point within the contact patch,

4. The pressure p, is adjusted proportionally ta -z at each point.

5. Steps 2, 3, and 4 are repeated, with the adjusted Prs unti] flatness is ochieved
within some desired tolerance.

The propertionality betweenn z and the increment to p, af each point Is based on
the calculated shope due to @ point load, Consider a point load P acting ot % - P is

given by
P, = Pé(e~9) (10
where 4(¢ - wl) is the Dirac delta function. The sine aond cosine infegrals of p,

{right-hand side of Equations {4} and (6} ) are

Prs sinn (lpl) m

T
Prc © % cosn (wl)
Calculating Cn and D from Equation (7), then substituting into Equation (3), it is found
that the radial displacement is given by
wig) = P(p — o) (12)

where

f(m, -9}z ?[LTH Z[In cos n (‘P' - @) + J sinn (9 -0)] (13

The n = 0 term, Do , has been left out of this analysis. It is small, and is also a

constont value which Is ultimately eliminated in this calculation of shape changes.

2-9




— Figure 3 shows f(@, — @) for a tire whose shape is calculated in Section 2.4. The
curve is plotted over a ¢ range equal to plus and minus the contact patch length, There
is a well-defined peak at the maximum at ¢ = 2 - The values of f at the extrema of
¢ shown are not small compared to the valve at ¢ = ® i the extended reaction of the
tire must be considered when performing the adjustment in Step 4 cbove. If only cne
point were considered, the appropriate pressure adjustment would be

Ap = -2/(f (0) AX) (14)

where Ax is the mesh step size used in the pressure integrations. For an extended
- pressure distribution, using Equation (14} at eoch point would give much too large an
adjustment. The procedure adopted is first to calculate Ap, from Equation (14), then
divide it by the total mesh size. This provides an estimate for the first iteration. The
adjustment for the second iteration can be more precisely estimated by comparing z from
the initial step and the first iteration. This procedure was adopted, and was found to
converge within two or three iterations. A rapid convergence is highly desirable for this
calculation, due to considerations of computer time and cumulative rounding errors.

2.3 Structural Properties of a Tire

The equations of motion presented in Sections 2.1 and 2.2 are written in terms of

structural properties of a uniform shell on @ uniform elastic foundation. To apply these

- equations to o tire, it is necessary 1o compute equivalent properties for a real tire,
o E’:c:»hrn8 derived the relationship between tire structure and effective properties for a
- radial tire. Several other authars, for example References |3 through 17, have derived

structural parometers with emphasis on the detailed behavior of the cord/rubber com-

posites which form the basic structure,

P Figure 4 Is a simplified sketch of a cross-section of a radial tire. A single 90° ply

— runs from bead 1o bead, When inflaled, the carcoss ply is approximately circular in the

‘ sidewall area. Several belt plies fie on the carcass ply in the tread area. They constrain

f the carcass, making it flatter across the crown, Not shown in this sketch are sidewall

; rubber, Inner liner, cushions, etc.; these are secondary to the simplified structural mode!
considered here.

The mass density u follows directly from the cross-sectional area of the tread and
belt area together with density of the materials. The remaining structural parameters
require a more detalied analysis of the tire structure. Their derivations are discussed in

the fellowing subsections.
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2.3.1 Extensional 5tiffness

The exfensional stiffness, EA, is based on the lengitudinal properties of the tread
belt, Figure 5 is a sketch of a single ply with cord angle «, The behavior of a single
unconstrained ply under tension is quite complex, exhibiting asymmetric shears and
twisting. If it is noted that plies are stacked with some degree of alternation of angle,
and out-of-plane strains are constrained by the remainder of the tire, then it is reasonable
to calculate longitudinal stiffness with the assumption of no shear in the circumferential
and transverse directions, and with no twist. For steel cords of number and area such that
the stiffness aligned with the cords is darninated by the steel, Bnhm8 and F’osfcﬂvi17

obtain expressions which may be reduced ta the following:
EA = 4(A ~ A) G (I - cot’a + cot’a) (15)

where A and Ac are the cross-sectional areas of the tread/belt construction and the
cords, respectively, and GR is the shear modulus of rubber. A Poisson's ratio of 1/2,
typical for rubber, has been included.

Equation {I5) corresponds to strain of the cords being negligible as compared to
strain of the rubber. [t is not applicable to very small @, but is a very good
approximation at typical belt ply cord angles., At « = mn'l\fT', where cord strain is

always zero, Equation (15) is exact,

2.3.2 Bending Stiffness

The bending stiffness, El, is based on rectangular beam theory with average
stiffness governed by EA .within the belt plies and rubber elosticity within the tread.
Consider the composite of N belt plies plus a tread layer sketched in Figure 6. The
bending stiffness of the belt plies alone is given by

3
€N, = —EA_ Oy
b b b 12 (18}
The bending stiffness of the tread alone is given by
f?
(€D, = Egq wy u7n

Equation (I7) places the neutral surface of bending at the bose of the tread; this is
expected because of the high extensional stiffness of the belt as compared to the tread
rubber. The values of Wy and ty depend on the fread pattern as well as the overall

2.13
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dimensions. If there are circumferential grooves, Wy should represent the effective
tread cross-sectional area. |f there are loteral grooves, ty should be measured from the
base of the tread rubber to the bottom of the grooves.

2.3.3 Bedding Stiffness

The radial and circumferential bedding stiffness, kr and k? , represent the support
of the tread area by the sidewalls. The sidewalls support the tire through the effect of
inflation pressure, For the purpose of estimating these stiffnesses, the sidewalls may be
treated as membranes with circular shape, Referring to the sketch in Figure 7, Bohm
derived the following expressions for kr and ke, :

cos 8 + 6, sin e,

k = ‘ P (IB)
r sin 90 - Go cos 90 o

GR'(

]
k‘l =—Is—— + PO Coteo

(19)

where Pg is the inflation pressure,

These expressions were derjved by considering virtual displacements in the radial and
circumferential directions, keeping IS invariant, and assuming the sidewalls remain arcs
of circles. The shear term in Equation (19) is based on the rubber alone, since the shear is

transverse to the radial carcass ply direction,

2.3.4 Damping Coefficients

A direct calculation of damping coefficients from detailed construction would be
extremely difficult, and would require a0 model substantially more complex than con-
sidered thus far. It is simpler to use experimental measyrements of loss to estimate

damping, treated here os viscous damping,
Consider a one-dimensional darmped oscil lator whose equation of motion is
m¥ +d&k + kx = F(1) (20}

The Q factor (inverse of the loss factor, the altenuation per cycle) of this system is

@ :=Vkm /d (21)

Measurements of reverberant decay times7 ond in-use decay mtesl0 indicate that Q is
of order 10 for heavy truck tires. Applying Equation (21), noting that the quantities of

given by

N

interest here are per unit length,

2-16
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3
d =k n /10 (220}

d = [k w110 (22b)

where k. and k, are given by Equotions ( 18) and {19},

2.4 Calculoted Shape of Two Tires

Tables 2 and 3 list pertinent material and dimensiona! data for two [|IR22.5
heavy-duty truck Hrrzs.l8 Tire A corresponds to the B.F, Goodrich Milesaver steel-belted
radial tires which were tested and reported on in Reference 7. Tire B corresponds to an
experimental variation being manufactured for use in a later task of the current project,
with the belt stiffened by the raduction of cord angle and addition of an extra belt piy.
Table &4 lists the calculated structural properties required for Bohm's equations. Two
bending stiffresses are shown for each tire: with and without the stiffening effect of the
tread rubber, corresponding te tread grooves which are predominately circumferential and

transverse, respectively.

The shapes and contact patch forces for these two tires were computed using the
methed described in Section 2.3, Figures 8 and 9 show the calculated curvatures for the
transverse groove version of each of these tires running at 35 mph on a smooth flot
surface. The calculations used a 200 point mesh in the contact potch for numerical
evaluation of the pressure integrals, and incfude harmonic terms up to  n =500,
Figures 10 and ! show the caleulated radial contact patch pressure distribution for each

tire.
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Tabte 2

Summary of Material Properties,
B.F. Goodrich Heavy-Duty Radial Truck Tires

Elast(i:s??oduli Static Dynamic

Cord Plies ER = 1600 2800
Gq = 530 940

Tread Rubber En = 950 1640
Cr = 320 515

Ply Thickness: 3/32 inch

Tread Depth: 19/32 inch

Belt Cords: 0.0472-inch diameter steel, 14 per inch
ES = 3 x 107 psi

la

-

P

p Table 3

f Iy Summary of Belt Constructions

‘1

rm

. TIRE A (Stondard) TIRE B (Modified)

‘ Ply No.

% - Angle Width Angle Width
i

P

il et | 65°R 6 inches 85°R & inches

| 2 210 | 7inches 18°R | 7 inches

1 . 3 219 | €3 inches I89L | 6.3 inches

P 4 --- 18°L | 5.5 inches
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Table 4

Tire Parameters For Thin-She!l Equations

|

TIRE A TIRE B
- Quantity (Units) Without with Without With
Tread* Tread Tread Tread
EA ( Ib) 19 x 10° | 132 x 10° | 340 x 10° | 354 % 10°
El (b-f19) 5.1 9.3 3.2 17.4
- 5
i, b/Ft/61) Lik x 10
; k, (b/ft/t1) 2 x 1o
. d_ (Ib/ft/sec?) 3.4
| 2
L d, (ib/f1/sec”) 5.6
P
* 1.5 x 10%
! "' To (Ib) S ox
- A (slug/ft) 0.158
i [
[ -
g __‘ * Tread is always present. This indicates whether the tread is included when calculating
; EA and El,
| —
7
L
!
i
|
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Figure 8. Calculated Tire Curvature. Tire A, Standard Construction.
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Figure 9,. Calculated Tire Curvature. Tire B, Modified Construction,
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Figure 10. Radial Contact Patch Pressure, Tire A.
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The phenomenon of air pumping, first identified by Hcyden,lg is based on the
existence of monopole sound sources associated with unsteady air flow frem tread voids.

The sound pressure radiated from a monepole into free space is

P = gy

B

(23)

where r is the source-receiver distance. When opplied to ftires, the key parameter
required is the second derivative of volume pumped, V. Early attempts to estimate V
based on vertical compression of the tread rubber did not yield satisfactory results.
Recent experimental results by Plotkin, et cl'.,7 and Samuels,z0 which involved direct
measurement of V , showed excellent agreement with Equation (23). A significant finding
in both of these studies is that tread void compression occurs primarily through lateral
motion of tread elements entering and leaving the contact patch; vertical compression of
the tread rubber is a secondary or negligible effect. Void volume may be computed by
assuming tread blocks to maintain their original shape, but with their spacing varying as
the shape of the tire changes through the contact patch. An additional consequence of
this direct relation to the shape of the carcass is that 1Y may be replaced by V" U2 .
This leads directly to the 40 1og|0u speed dependence first predicted by Hoyden and

very often seen experimentally.

Two other phenomena must be considered. First, a fire does not operate in free
spacer there are reflections from the ground and from the tire itself. In the near field to
the side of the tire, the reflection from the ground and the tire sidewail raises the
pressure by a factor of approximately &; this factor depends on the ratio between
wavelength and tire dimension. In generel, Equation (23) must be multiplied by a
geometric radiation factor G. Second, when considering a rib tire with continuous
grooves, some of the dispiaced air moves within the grooves, and does not pump out of the
tire. The amount which does lead to sound radiation is proportional to the fraction of
flow blockage, €. |t was shown in Reference 7 that for typical rib tires €=0.35. For a

crossbar-type void, open only at one end, ¢ = |,

The following subsections present the bosic derivation of air pumping for simple
lateral tread grooves, and the generalization to fuil tread patterns.

3.1 Air Pumping From Lateral Grooves

Consider a tread pattern consisting of lateral grooves and tfread blocks as shawn in
Figure 12. Assuming that the block volumes do not change, and that the centerline of
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3-2

e S O R S A SO NP SO RT SIS PR



each block remains normal to the neutral surface of bending as R changes, the valume of

a single void is given by

Vo= wd [I, = I he o+ (0, + 1) he] (24)

where k = |/R = curvature, and K, corresponds to the undisturbed curvature IIRO.
The derivation of Equation (24) carries the Implicit assumption that the pitch length |
(distance between repetitions of similar tread elements) is small compared to changes in
curvature, Note also that the functional dependence of V on « depends on total pitch
length, not just block or void size alone. Ewven though Equation {24) describes the velume
of a single void, it is ¢ single void in a full tread pattern. A single veid cut in a blank tire

would have quite different behavior, with detailed deformation of 1he surrounding rubber
playing an important role,

The quantity required is V. Noting that all parameters in Equation (24) except «

are constant, end that « is a function of ¢,
V=v (o) 0 =w, dl [)h o o? (25)
- T T v*'b d 92
The shape of the tire is given by Ry * w(e), with w(p) given by the solution to the
stationary shape equations. The curvature of a curve in r,¢ coordinates is given by

2 2
r e 240 = re”
[r + (M ]

Taking the second derivative of & with respect to @, substituting RO +w for r, oand

K =

retaining terms to first order in w,

iv
" W' W

R2
]

K (27)
The derivatives of w are straightforward to obtain from Equation (3). The final
expression for sound pressure p as o function of ¢, the instontaneous position of the

void, is (using Equation 23)

2
Ge U |
ple) = -Tﬂ ( ) w_ dh {l L)
e R': v vt _F-i-g"
{(28)

[ss]

* Z nz (n2 - 1} (Cn sinng + Dn cos ne)
n=
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where @ has Been replaced by U/’FtO . The sound pressure as o function of time Is given

by p (ao + Qt), where #, is the position of the void ot 1= 0.

A computer program has been prepared which reads C, ond D from a file
written by the shape calculation pregrem. These are invariant for a given carcass design,
speed, and load. The tread parameters are read from o separate input data file, Sound
pressure and carresponding scund pressure leve!l are calculated over a range of time
specified by the user. The program includes two detajls not explicit!ly noted above:

e The source-receiver distance r is o function of ¢. Lorge values of x" exist
over a small region, so there is generally little effect on signature shape
as r varies with o, By including an exact calculation for r in the program,
however, the correct distance to the major part of the source is automatically
accounted far.

s The sound pressure received at a given time is octually p (po + Qt + Qrfa),
since it takes time rf/a for sound to propagate from the source to receiver. The
program has the capability of making this phase correction, The calculation
becomes more complex, however, since time can no longer be treated as an
independent variable, This adjustment is therefore treated as an option used
only when necessary.

Figure 13 shows calculated air pumping per void for a 0.75-inch-deep by 3-inch-wide
grooves with 2.75~inch pitch cut into tires A and B. The geometric radiation factor G is

not Included, but will be essentially the same for each tire.

3.2 Air Pumping From a Full Tread Pattern

Once air pumping is computed from Equation (28) for o given tire and cross-groove
pattern, it is straightforward to scale it to other tread dimensions for the some tire
carcuss. f the air pumping sound pressure is po(f) for a tread void with pitch
Io {1 = o+ Ib), depth do and width W then the sound pressure for a tread void with

dimensions II ,d, vand w s

|
P,(T) = m po {1 (29)

Equation (29} applies equolly to the expression for sound pressure p(t) which includes the

phase adjustment $r/a.

344
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If void | is located at 2 and void 0 at Po 1 the time coordinate is adjusted by
(ol - ¢°) /9. If there is a series of grooves spaced at intervals Ap, then Equation (29} is

surnmed over all grooves with a time shift of Ag¢/Q between signatures.

The assumptions of ring behavier of the belt ond negligible compressibility of the
tread rubber lead to the conclusion that Equations (28) and (29) apply equally well to a
small lateral section of a groove which runs across the tire at an angle other than 90°.
The air pumping from an oblique groove may therefore be obtained by writing Equa-
tion {29) for each differential width element and integrating across the tire, Consider a
tread pattern consisting of a uniform cross-section groove whose shape s defined by
y (x}, where x=0 at the centerline of the tire and vy _ has sense opposite to ¢.
(Referring to the coordinates in Figure |, the tire would leave a footprint whose shape
corresponds to y _(x) in the x,y ground plene.) Returning to the use of ¢ as the
independent variable, the sound pressure from such a groove is

wy/2
o
ple) = ;;;; P, (@ — yg(X)IRo) dx (30}
-w1!2
where p_ is the pressure for a full-width 90° void of similar pitch and depth located at

¢ = 0 when t = 0, If there is a full tread pattern defined by N volds of shape ygi(x),
then the total air pumping noise is
N
I
ple) = w Z O ygil¥) / Rg) dx (31)
i=1 -w'/2

wy/2

Equation (31) moy be treated as a function of time by the relation ¢ = Qt.

The dir pumping computer progrom includes Equation (31). Any number of tread
voids may be defined, with ygi(x) specified as a set of points. The calculation is
applicable to rib tires as well as cross-groove. When defining elements for o rib tire, they
should in general correspond to the stroight segments between corners. The flow blockage
€ must also be specified so as to account for the fact that flow blockage successively

increases as each element goes further into the contact patch.
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4,0 CARCASS VIBRATION AND RADIATION

The tire models discussed thus far consider only the steady behavior of a uniform
carcass on a smooth surface. A treaded tire on a texiured surfoce experiences unsteady
loads in the contact patch. These lead to vibrations which radiate sound. The radiation of
sound by carcass vibration appears to be the major source of noise to the rear of heavy
truck tires. The most important radiating area has been identified to be the tread area

within one foot of the contact patch exif.7’lo Treating this area as a pismn,7 and as @

10 ond using experimentally measured vibration levels has

simple damped travelling wave,
given very good agreement with measured near-field tire noise levels. A key step of the
set of models developed in this study is oblaining vibration levels directly from the tire,
tread, and road surface properties. The following subsections describe models for the
vibrating motion of a tire in the region important for sound radiation, the excitation of

this vibration by the tread/read interface, and the radiation of sound due to this motion.

4,1 Vibratory Motion of Tire Carcass

The thin sheil relations, Equations (1), describe the full time-dependent motion of a
tire. Solution of these equations can be quite difficult; consider, for example, the
complexity of the the steady-stote solution presented in Section 2.2, There are two
physical parameters which permit substontial simplification of the equations:

e Frequencies of interest are in the audio range, generally above 100 Hz. The
rotational speed of a truck tire at 35 to 55 mph is 5 to 8 Hz. The equation may
therefore be considered in the limit 8/8t > 0.

e An area of about one-tenth the circumference of the tire is important, Over
this disiance, the curvature of the belt can be neglected.

Considering the limit 3/at =, all ferms in Equations (|} with a focter @ may be
eliminated. This removes all centripital and Cerioclis terms. While important for the
stationary shape caleulation, they are negligible ot audio frequencies, If the circum-
ferential coordinate is also changed from ¢ fo s = Rop , then Equations (1) become

uU-EA(V"JfT\],—-w‘) sl V- dp Vs 0 (320)
0
TR EA (Ro Vs ow) o+ El (wi\'r +-——2-2 w'" +—-—“-'5)
RZ R R
(] (o] [a]
(32b)

)+krw+dr»'v=0

1
-
o]
g
+
Al

Ho|
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where ( ) now denotes 3/as. The external pressures p_ and p, have been set equal
to zero because the area of interest is outside the contact patch. The vibratory
excitation will be handled by a boundary condition at the contact patch edge.

Since the important vibratory motion eccurs over a short range of s, it follows that

8/as >>i!RO . Neglecting terms of order I!RO » Equations (32) become
pi?—-EAv"+kfv—d,r¢=0 {330)

pW+Elwiv—Tow"+krw+drw=O {33b)

The w and v motions are independent in this limit. Equation (33b) is identical to the
form Eberhard'rlcJ postulated for interpretation of phase velocity, with the addition of the
damping term.

For the case of excitation at the cantact patch edge, the solution to Equation (33b)

at frequency w may be written

ifk,s —wt} -ns
w=We t € (34)

where s s measured away from the contact patch edge, and W is determined from the
forced motion of the edge of the contact patch. The wave number kt and decay factor 5

are determined from:

ky = wap (35)
K
2 } 2 r
cp = (EI kS T, +k—F) (38)
C. k
- pr (37)

2
(4 EI k1 + 210)

The physical parameters used in Equations (34) through (37) are identical to those used in
Section 2 for calculation of the stationary shape. One difference in application is that g
in Equation (34) is directly related to the loss factor: n= k,{/l; Q@ . The empirical value of
Q = 10 may be used rather than the deduced value of kr' The high-frequency behavior of
the belt area includes losses which are not treated by consideration of kr alone.

Figure 14 shows calculated phase velocities for the tires described in Table 2. Also

shown are measured phase velocities for two examples of production versions of tire

4-2
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construction A. The measured phase velocities were obtained from transfer functions
calculated from the static vibration test data reported in Reference 7. The phase
velocity agreement is quite good, lending confidence to the validity of this model.

A detail which was removed from the equations of motion when obtaining Equa-
tions (33) is the fact that the tire is moving. In a frame of reference moving with the
tread belt, this may be restored by arranging the boundary conditions ~ which define
amplitude W - to meove at the tire speed in the -s direction, In a fixed frome, this is
equivalent to adding the tire wvelocity to the phose velecity., The computerized
implementation of Equations (34} through {37) includes this convection adjustment, The
tire speed is added to Cp following the contact patch and subtracted ahead of it,

4,2 Vibrational Excitation

4.2.1 Excitation Due to Tread Pattern

Consider o tread pattern whose circumferential distribution of tread area may be
written A(rao), where 20 corresponds to ¢ at t = 0. The differential area over a
circumferential increment dmo is given by A(oo)dsno. The differentiol force

increment at a position @ is given by
dF {g) = plg} Alp — Rt) do (38)

where p(p) Is the radial force In the contact patch as colculated in Section 2.0.
Equation {38) is written as a ring model, with uniform transverse properties. It Is
straightforward to consider this relation to be generalized such thot p (e} is the pressure
averaged [aterally across the tire, and A is a lateral average of the geometric tread area
times a weighting function representing the actual lateral pressure distribution. A typical

lateral pressure distribution is shown in Figure 2.

The quantity which is directly related to sound radiation is the radial acceleration of
the tire. The motion of the tire at a point @ s given by fle ~ ml) times the force
at ¢, where f is as defined in Section 2. Thus,

dw(e) = f(@ - ¢) ple) Ale - a1t) de (39)

Integrating Equation (39), the motion at 8 is

2r
w(ol) = f f{o - o,) p® Ale - Qt)da {40}
0
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The acceleration at ¢ is given by

2
W(csl) = 92 ] flo - ”’l) ple) A'(p ~ 0t)dp {41)
Q

It must be kept in mind that Equation {41) is a dynamic result based on the static behavior
of the tire; it assumes that the effect of loads of ¢ are instantly transmitted to 8)-
Since ?| of interest is at the edge of the contact patch, and ¢ of interest is within the
contact patch, the distances are generally small.  The assumption becomes more
reasonable as g-~@, , 50 that Equation (41) will be most accurate when predicting motion
at one contact patch edge due to excitation at that edge. Physically, this should be the
most impertant component. The final result for excitation will be examined fe check this

condition,

Integrating Equation (41) by parts, and noting the cyclic nature of the integral,

2r
W(m,) = -92 f ' {e - ¢]) pls) A'(g — Dt)de

o
(42)
2w
o2 f flp - a,) pls) A'(p — Ot)deg
[}
Integrating the first integral by parts, the following is obtained:
Wie) = ald) + 1) @3

where

2
f " - ¢) ple) Alp-atide
o

27
[ f' (o~ nsl) Alp—-qt) — (g~ ¢|) A'{e -0t} p'(¢)de
o

N
1]

Equations {42) and (43) are forms which may be numerically integrated: f and p are
known from the stationary shape calculation, and A is known from the tread geometry.
The integration by parts eliminates the second derivative of A , which can be numerically
troublesome. Rather than adopt a "brute force" approach of numerical integration,
however, it is worth simplifying these expressions based on known properties of f and p.
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Figures 15 and 16 show f' and f{", respectively, correspondingto f inFigure 3.
There is a strong peak in " about ¢ = ¢ - Integral II will have its maximum

contribution at this point. Thus

I = aff (1) p(¢|) Al ~at)

where Af' {0} = ' (0+) — F{0-). The point at which ¢ is of interest is just outside the
contact patch, where p = 0. Thus, li =0,

The contact patch pressure rises very sharply at the edges, so that I2 will be
dominated by the integrand near the edges. Approximating p (¢) by a step function:

pté =P [Hig -8 - HE -9,

where ¢ a and #, are the contact patch entrance and exit, respectively, W becomes

W(ca]) = F'n2 {f'(% - @) Als ~ at) - f(¢0 - g A(e, - at) ”
b4
~ P, - @) Al - at) + fla, - 8) A(8 - m)]

Consider the motion at one edge of the contact patch; By, 1 for example. The term
f' (o, - ol) becomes f' (0) = 0. Referring to Figures 3 and |5, the terms f (¢, — ¢, ) A'
and f (csa— db)A are small compared to f (0) A' for any tread with a reasonably
aggressive tread and pitch smaller than the contact patch length, Equation (44) is thus
dominated by the f (0) A’ term. Thus the motions at the contact patch edges are

w ()

"

P e’ £ A, -an
(45)

n

Wie) = P 2l £ () A (o, - 21

The motion at a contact patch edge is thus dominated by tread impacts at that edge. This
is the condition for which the use of the steady quantity f (¢ - e&l) is most valid. As a
qualitative additional support for this simplification of Equations (44) into {(45), the use of
flp- ¢|) would tend to overstate the motion at a peint away from the excitation, so that
the neglected terms f' (r:)u - %) A ond f (°a - %) A' here are probably larger than the
correct ones in a more exact derivation,

Equations (45) are physically equivalent to the tread impulse models in use in the
tire industry as the basis of tread randomization programs, They go one step further in
that the amplitude of the vibration input, as well as its spectral properiies, is obtained,
These equations form the basic vibration input element of the noise models., The
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amplitude W required for the vibration response, Equation {34), is directly obtained from
the Fourler transform of A'.

In the computational system, f(0) is obtained from the programs which compute
the stationary shape of the tire, as discussed in Section 2.2. A' is computed from the
tread geometry. It Is o speclalized calculation for each tire, end is treated as an input
quantity. The spectral values of A' at particular frequencies are obtained by numerically

computing the Fourier coefficients of A',

4,2.2 Excitation Due to Pavement Texiure

Consider a pavement with a surface texture described by zg (x,y), the height of o
point above the mean, If a tire tread compresses linearly 1o conform to the pavement, as
suggested by Nilsscm,9 and the average total compression under load P is Az, then the
load at a point x,y is given by

z, {x,y) )

Py {xy) = P (I e {46)

As pointed out in Reference 2!, direct conformation between rubber and pavement, and a
linear relationship, is not entirely realistic. The effect of pavement roughness at a-point
is spread out, in a microscopic equivalent to the function f. If z, {x,y) is combined with
this extended reaction at each point, Equation (46) may be written

P {x,) = P (I + .!:(x,y)) {47)

where {{x,y) Is the combined function. Calculation of ¢ from first principles would be
extremely difficult. It is clear, however, that the largest scale features would be similar
to those of z /az . Considering z, /Az to be a first estimate, and the actual behavior
(through the microscopic f) to be smoothed out, & would look much like z, /as
modified by a low-pass filter. A reasonable first approxirnation to & would therefore be
z, / Az , smoothed by a scale length comparable to the scale estimated in Reference 21,

With t defined by the surface macrotexture and the extended reaction properties
of the tread rubber, Equation (38) for the load on an element of the tire may be extended

as

dF () = p(e) Alo - 0N [l + 5(50+R(m-§2t))]do {48)

where s, is related to the initial position of the tire at time 0, and ¢ = £ (s) Is a one-
dimensional version of [ (x,y}. The coordinate s is in the -y direction (see Figure 1); its

sense is chosen so as to match the direction of A (g&o) .

h.9



Equation {48) may be carried through an analysis identical to that from Equa-
tions (38} through (45), with A(l + t;) replacing A . This gives, for the area following
the contact patch,

W o) = Pl £ [Als, - D [1+ £ (54 R (o, - an)]
(49)
¢ Alp, - an 1 (sp + Rigy - 1) R

If it is assumed for simplicity that ¢ <] ond that A = constant when compared
with ', then

Wgy) = P ? £ (o) [A (0, - at) + K ¢' (sg + Rle, — @)} R]  (50)

The assumptions leading to Equation (50) essentially make the effects of tread and texture
independent ond directly odditive. The effect of texture is seen to have an effect
identical to that of tread. This is also clearly the case in Equations (48) and (49).

This result suggests that increased pavement texture on a course scale should
increase tire noise and also decrease differences between various tread patterns. This is
exactly the result experimentally obtained by Thrasher, et c:l.,22 and Walker.23 In these
two studlies, various tires ranging from blank to traction-type cross-groove were run on
different pavement textures, The pavernents had textures which visibly varied in
courseness. The noise levels showed a strong tendency to increase and to exhibit lower
tire-to-tire varjation with increasing roughness. Individual deviations from these trends
were generally associated with tread potterns which were not necessarily dominated by
vibration, such as crossbar tires which exhibited significant air pumping.

In the noise models, ¢ ond ¢' are tfreated as Inputs, similar to the handling
of A and A'.

4,3 Radiation of Sound From a Vibrating Carcass

The relations presented in Sections 4,| and 4.2 define the motion of the belt area in
the vicinity of the conmtact patch. The sound pressure rodieted from a moving

N I/
surface S is given byzi

p(T) = f G(F|7) @Fp-R) ds (51)
5

If motion at a single frequency is being considered, this becomes
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p(T,w) = -iwp[ G (F|¥) u, (F)dS (52)
5
The radial velacity Yy is w as computed from Equation (34), with amplitude W
determined from the analysis of Section 4,2, The appropriate Green's function depends on
the geometry considered. Eberhardt 19 successfully used a Green's function corresponding
to a vibrating plate (the flattened tread area) in an infinite baffle. Adopting this
approach, and substituting Equation (34), Equation {52} becomes

) A R
p(Tw = % w? oW f j £ — e 17 e gs (53)
-wb/2 0

Note that the nomenclature k, denotes wave number in the tire; I<O denotes wave
number in air.
{t is convenient to narmalize Equation (53) by the acceleration W at the contact

patch edge. Equation (53) becomes

b e'ka ks
- e e dx ds {54}
wb/2 o

. __P
w = T

A computer program has been prepared which caleulates Equation (54) as a function of
frequency and position, for the tire structural parameters defined eorlier. A two-
dimensional Romber925 integration scheme is used to perform the area integrals,

Figures |7 and |8 show the calculated normalized radiations for the two example
tires discussed earlier, Shown on each figure is the raodiation one foot ghead of and
following the contact patch edge, along the tire centerline and three inches from the
tread belt. This corresponds to the microphone position considered in Reference 7 for the
discussion of carcass radiation. The calculation of octual sound pressure would require a
geometric factor {as discussed in Section 2) as we!l as a valve of W (0)}). The present
discussion is primarily concerned with comparisons of radiated sound; the absolute
pressures are of secondary interest ot this time. Quantitative validation of this
mechanism is documented in References 7 and 10. Note that the radiations are virtually
the same for both tires, and that radiation is greater to the rear of the tire than ahead of

it. This latter result is fully consistent with experimental findings?’lo
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5.0 LOW NOISE DESIGNS

The noise models presented in Sections 2 through 4 provide a means of predicting
noise due to air pumping and carcass vibration for a given tire design. Approaches to
quiet design can be identified from trends in the noise models, This section discusses such
low-noise design approaches. Included in the discussion are details not yet quantified in

the models which must be studied in the experimental phase.

5.1 Effect of Carcass Design

The carcass has the following roles in neise erission:
{1} The stationary shape, and associated &", influence air pumping noise,

(2) The point source response f(0) governs the transformation of contact farce load

into vibratory excitation.
(3) The vibrating tread belt area radiates sound,

The effect of {1) is quite clearly seen in Figure 13; increasing treed belt stiffness clearly
reduces air pumping, as expected. [t apparently has little effect en {2) ond (3). While
derivatives of f are influenced, the value of f itself does not change significantly with
belt stiffness. The belt stiffness thus affects the tire shape in a way which influences air
pumping (dependent on fourth derivative of shape) but does not affect carcass response
and radiation (which depend only on lower derivatives of shape). Increasing belt stiffness
thus appears to be a useful methed of reducing air pumping, with no adverse effects on

vibrotion noise.

A detail left out of f is the vertical compression of the tread rubber. The relation
between ¢ and Zg for pavement texture depends strongly on the vertical stiffness of the
tread. Softening the tread should reduce pavement texture noise and noise associated
with smaller tread elements, although the net impulse for larger elements would not
change, Changing rubber compound is one approach, which, however, may not be
practical because of the effect on durability. Another approoch would be the addition of
cuts and sipes which provide lateral expansion space when the tread is loaded. This
approach can be experimentally studied by successively culting a test tire. The effect
should be strongest where pavernent texture noise is dominant. Potential performance
effects might be decreased durability due to small elements breaking off, and increased

wet traction due to additional drainoge.
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5.2 Effect of Tread Design on Air Pumping

Referring to Equations (25) and (29), air pumping is directly related to basic void
dimensions, Decreasing lateral width provides a direct reduction:  this should be
minimized as much as possible within the constraint of soft-surface traction, If a certain
total void volume is required, this can be maintained by increasing lv without changing
total pitch 1. Reducing tread pitch reduces air pumping per void, but increases the
number of voids per unit time. Considering the noise from each vold to act independently,
the detected average sound pressure would vary as \/T Care must be taken when
changing I, or I not to adversely affect A', as discussed in Section 5.3 below.

The most dramatic reduction to air pumping can be cbtained by slanting the voids,
Figure 19 shows the effect of changing void angle. The noise reduction is substontiai as
angles are reduced from 90°. 1t should be noted that the trend shown in Figure {9 applies
to the average angle; a zig-zag veid which runs on average directly across the tire is not
significantly different from a straight 90%void.

The calculation per void shown in Figure |9 applies equally to crossbar and rib
patterns, as shown in Figure 20, Appropriate values of the geometric factor G in both
cases, and fiow blockage € for rib grooves, must be applied. Two other factors rmust be

considered:

8 The angle, throw, and pitch of a zig-zag rib groove, as shown, are interrelated so

as to have a continuous groove,

e The contributions from cross-grooves directly add, allowing for differences in
time. The rib groove elements appear sequentially, with the effective value of €

decreasing for each element as the next moves into the contact patch,

The strong attenuation of pumping for each rib element implies that the effect of angle
on rib air pumping is qualitatively complete in Figure 19, The effect of a full cross-
groove pattern requires summation of the independent contributions.

Figure 21 shows a calculation similar to Figure 19, bul for a sequence of five
grooves. The result generally looks like a repetition of independent pulses. At 1;50,
however, the monopole signal vanishes, At this angle, the circumferential extent of each
groove matches the tread pitch, and the positive and negative portions of the pulses
cancel. There will still be air pumping noise, but in the form of dipoles with much lower

levels.
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Figure 21 shows that by proper spacing of voids, phase cancellation can minimize air
pumping noise. This result depends strongly on the rather symmetric form of k"
predicted by the carcass model, plus the various other idealizations included in the model,
Pending experimental verification of these details, this is a potentially promising noise
reduction approach. It would aiso be consistent with reducing A', the key 1o treed

pattern vibration excitation.

5.3 Effect of Tread Design on Carcass Vibration

The key parameter in vibralion excitation is A', as seen in Equation (45). For a
typical zig-zag rib pattern as shown in Figure 20b, A' is a series of step functions. For a
given tread throw (total lateral extent of groove), the impulse per element is constant,
The obvious approach is to reduce tread throw, tending toward straight circumferential
grooves. This is a trivial solution, however, and s not worth pursuing in the present
program. Several more subtle approaches exist which may provide less of a compromise

with tractive performance:

e A' is a combination of geomnetric area and lateral pressure distribution. Proper
lateral placement of trecd features may provide some noise minimization.

8 Placing multi-element patterns so os to minimize the collective A' s
important, Placing similar tread cycles /2 out of phase will achieve this; see
the sketches in Figure 20. The phose cancellation cross-groove pattern discussed

in Section 5.2 is consistent with this.

¢ The square wave A' associated with zig-zog grooves has a spectirum rich in
harmenics, Rounding the corners would reduce higher frequency excitation, yet
leave the basic tread pattern similar to its original design, The usefulness of this
approach will depend on the net frequency content of the whole system.

e Fine detail with A' of opposite sign from that of the basic pattern couid be
employed, Lateral placement will be impartant for this appreach,
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