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L. INTRODUCTION

This report presents the results of an engineering study
to identify and (design methods For reducing diesel engine hlock
vibration and radiated noise. The methods identified are such
that noise reductions could be achieved without degrading the
engine's performance, fuel economy, or emissions. fThe goal of
the study was to demonstrate a 5 dB reduction in radiated noise
by retrofitting an existing, popular heavy duty truck diesel
engine, the Cummins NTC-350 Big Cam One engine. The study fo-
cused on the noise radiated by the surfaces of the engine and did
not include exhaust, intake, or cooling fan neise since the noise
control for these sources has already been demonstrated [1].

The work was carried out in five major phases:
1. Determining the engine noise characteristics.

2. Developing a model which relates internal forces to

external vibration or noise levels.

3. Designing noise controls with constraints provided
by the basic design and by the manufacturer of the

engine.
4. Developing a demonstration engine.
5. Testing and evaluating the demonstration engine.

The report is organized into sections discussing each of
these phases separately. Section II presents a discussion of the
engine's design and performance features as well as a detailed
description of the noise characteristics., First, the baseline
noise characteristics are determined which relate the total sound
radiation spectra of the engine to the speed and load of opera-
tion. Second, the magnitude of the sound intensity radiating




from each of the various engine surfaces is measured in order
te rank them according to their importance in generating noise.
These measurements deternine the basic noise emission character-
isties of the engine in its standard configuration.

Section III presents the development of a noise generation
model for the engine. First, the levels of various internal

sources (such as combustion pressure, piston impacts, injectors,
bearings, gears, pumps, and air flow thraongh valves) are deter-
mined through direct or indirect measurements. Second, the
characteristics of the wvibration transmission through the engine
structure, from each source location to the external surfaces,
are determined from vibration response measurements on the dis-
agsembled engine. Third, the sound radiation characteristics
of each vibrating surface are determined by relating the sound
intensity measurements to the vibration levels of the engine
measured during the operation of the engine in its standard con-
figuration. Combining the results of these three procedures
gives a means of estimating quantitatively the contribution of
each Iinternal source to the total radiated noise. The major
sources of noise are discussed in detail. These include piston
slap, injectors, and combustion.

Section IV of the report discusses the development of engine
degign modifications to reduce the A-weighted radiated noise in
a truck by 5 d4B. First, the noise generation model is used to
develop analytical models which relate quantitative changes in
the engine design parameters to quantitative changes in the
engine nolse. These models are used to identify values of engine
design parameters which will give the desired noise reduction.
Second, prototype designs are developed for the engine components
which will achieve the specified design parameters. These proto-
type designs are modified and improved based on the constraints
of other factors such as durability and performance.




II. ENGINE DBESIGN AND PERFORMANCE

The Cumming N1C-350 Rig Cam One is a heavy duty truck engine
designed to be used primarily in truck classes 6 and 7 for long
range hauling. The designation "NTC-350 Big Cam One" refers to

the following characteristics of the engine:

N ~ New

T - Turbocharged

C ~ Custom-rated

350 - 350 horsepower

Big Cam One - The engine has a larger diameter cam

-
o than the standard NTC-350 engine. In this version
the cam is increased from 2" to 2.5" in diameter
which results in shorter injection duration and
lower combustion temperature and yields lower
emissions and better fuel economy.
The NTC-350 Big Cam One's rated horsepower is 350 at 2100 rpm.
It is a six-gylinder, in-line, four-stroke engine which is turbo-
charged and intercooled. Tha NTC-350 Big Cam One utilizes a PT
fuel system (P - pressure and T - time). This fuel system incor-
Pl porates a low pressure metering fuel pump that controls the fuel

delivery rate to the injectors located in the head at the center
of the combustion chamber. The injectors are activated through a
rocker arm push rod assembly by the camghaft. These injectors
perform the same task as unit injectors in that they receive fuel
at a low pressure and raise the pressure significantly through
the use of a plunger activated by the camshaft to achieve proper
fuel spraying into the combustion chamber. The injectors are
di fferent, however, from the so-called unit injectors because
the metering of fuel is done by the PT pump rather than by the
injector (see Figure ! for a schematic of the fuel system).

The NTC-350 Big Cam One engine comprises a single block
with three separate heads, each head serving two cylinders. It
utilizes a cast aluminum oil pan and rocker boxes and stamped
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steel valve covers and is equipped with an air compressor driven
hy the same shaft as the PT fuel pump. The engine uses a 24V
electric starter attached to the SAE #2 flywheel housing.

The specifications of the NTC-350 Big Cam One are as follows

{see Pigure 2 for engine performance}:

power rating 350 bhp
governed rpm 2100
peak torque 1065 1b-ft at 1400 rpm
nominal torque rise 22%
no. of cylinders 6
bore and stroke 5.5 x 6 in.
piston displacement 855 inS3
lube system oil cap 11.5 galloens (U.S.)
net weight with standard
accesgsories, dry 2580 lbs.

The NTC-~350 Big Cam One incorporates the following elements:
single piece aluminum pistons, cast iron liners attached to the
block at the top flange, a single piece head gasket per head,
cast iron block, cast iron heads, and a positive displacement oil

gump pump.

A Baseline Noise and Vibration Characteristics

The noise radiated from the NTC-350 Big Cam One engine was
measured in one~third octave bands in the frequency range from
100 to 10,000 Hz. A 200 m? reverberant test cell which was cali-
brated for sound power level measurements of nolse sources with
puretones according to American National Standard ANSI $1.21 and
International Standard ISO 3742 was used for the measurements.
The instrumentation required for the measurements is shown sche-
matically in Figure 3. Using the rotating microphone boom, the
sound pressure in the room was measured and averaged over time
and space. The sound power level is computed from the average
gound pressure level by comparing it to the measured sound
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pressure level of a standard noise source with a constant sound
power output (a centrifugal fan made by ILG Manufacturers,
Chicago was used for this project). The standard nolse source
was measured after each engine measurement sequence to account
for changes in the temperature and humidity of the air.

The vibration levels of the engine structure were measured
at various points with accelerometers attached to the engine sur-
Face. The noise and vibration signals were analyzed in one-third
octave bands using a Nicolet 444 Spectrum Analyzer interfaced
with both analog and digital outputs. Selected test measurements
were also tape recorded on a 2-channel Nagra IV-SJ Tape Recorder
for storage and more detailed analysis.

A load was applied to the engine with a Go-~Power DT-2000
Waterbrake Dynamometer attached to the clutch housing. The dyna-
mometer indicates both speed and torgue during the operation of
the engine. Other engine parameters such as temperatures and
pressures were also monitored during the tests to assure that the
engine was operating properly.

A photograph of the revarberant room facility is shown in
Pigure 4. A phatograph of the engine mounted in the facility is
shown in Figure 5. In order to reduce the intake and exhaust
noise, the intake and exhaust pipes were wrapped with Ffiberglass
and lead during the noise test. The exhaust was cooled with a
water spray. The dynamometer and stand were also wrapped to
reduce their radiated nolse. The engine was run without a
cooling fan to eliminate that noise source. The total sound
power radiated by the engine was measured as a function of speed
and load.

Figure 6 shows a summary of the noise emissions of the dle-
sel engine. The A~-weighted sound power level is plotted versus
speed for 50% and 100% of the full load at each speed. The noise
emissions show a dependence on both speed and load. The sound
power level ls approximately proportional to 25 log M where N is
the engine gpeed in RPM. A more detailed representation of the
noise emissions is given in the next two figures. Figure 7 shows
the frequency spectra of the sound power levels at 2100 RPM for
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the two load conditions. At higher frequencies the inerease in
sound level with load is small but fairly uniform with freguency.
Figure 8 shows the frequency spectra of the sound power levels at
full load for three speeds. RExcept at low frequency the increase
in sound level with speed is fairly smooth with fregquency.

B. Engine Vibration Characteristics

After the coneclusion of overall engine noise measurements,
the NTC-350 Rig Cam Dne was instrumented with accelerometer moun-
ting pads at several points on the external engine surfaces. The
locations of the measurement points can be seen in Figure 9.

The engine was run at 2100 RPM, 100% load and an accelerometer
was moved from location to location. Accelerometer output for
each point was analyzed with an FPT analyzer, averaged over time,
and then plotted using an X-Y plotter.

After all the data were collected they were divided into
the fellowing six areas: front, right side, left side, oil pan,
valve covers, and the after cooler. The data were then used to
obtain the average surface velocity for each surface. Greater
emphasis was placed on the surface velocity calculations for the
lower right block, lower left block and oil pan surfaces since
the major objective of the program was to evaluate the noise and
measured vibration patterns of these surfaces within a truck
engine compartment. Figure 10 represents the lower right and
left block surface velocities and Figure 11 depicts the oil pan
surface velocity.

It can be seen in Figure 10 that the lower left block has
greater vibrational energy levels than the lower right block in
the frequency range from 100 Hz to 2 kHz with a pronounced peak
around 2 kHz. Since the left side of the engine block is the
major thrust side with respect to piston motion, piston slap is
expected to produce greater vibration on the left block side.

In Figure 11 it can be seen that the cast aluminum pan exhibits
Fairly large vibration levels in the frequency range from 800 Hz

to 2.5 kHz.
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IIT. DEVELOPMENT OF A NOISHE GENKRATION MODEL

The previous section discussed identification of the
surfaces of the engine that contribute most to the overall noise
radiation. At this point it would be possible to design covers
and shields to reduce the radiation from these surfaces. It

would also be possible to design a damping treatment for these
surfaces in an attempt to reduce the vibration levels and sub-
sequent radiated noise. However, the addition of damping is
not generally effective because of the relatively high value

of damping already present in a built-up engine structure.

The addition of covers and shields can he effective in reducing
noise, but is not desirable because of the potential damage to
these items in a service environment, the interference with
maintenance, and the added weight.,

To proceed with a practical demonstration of engine noise
control we have focused on changes to the internal structure of
the engine which reduce the vibration generated by internal
sources, such as combustion or piston slap, or reduce the vibra-
tion transmitted to the radiating surfaces of the engine. To
accomplish this objective we have continued the modeling work by
developing methods to identify the sources of vibration in the
engine and the different paths by which that vibration is trans-
mitted to the engine surfaces.

The noise generating process in engines can be divided into

four steps:

1. dynamic pressures and forces are produced within the
engine by internal sources such as combustion, piston

slap, fuel injection, gear mesh, etc.;

2. the pressures and forces act on the internal engine

structure and causge a local vibration;

3. the engine structure transmits the vibration to external

surfaces of the engine;

18
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4. the vibrating external surfaces of the engine produce

radiatad noise.

RBased on previous test results from Vee and in-line 6-71
engines as well as the DDA 6V-92TTA cngine [2], three internal
sources were chosen for study: combustion, piston slap, and
injectors. For each source the level of the excitation and the
vibration transmission to the engine surfaces have been measured.
The results have heen combined into a noise generation medel
which predicts the noise radiated by these engine sources and can
be compared to the measured noise levels of the engine. The
following paragraphs outline the procedures for studying each of
these three sources and their associated vibration transmission

paths. A more detailed discussion of the procedure is presented

elsewhere [3].

A, Combustion Pressure

The source level for combustion nolse was measured directly
during operation of the engine with a pressure transducer in the
combustion chamber of one of the c¢cylinders. The transducer was
water—cooled and flush-mounted in the cylinder head. Figure 12
shows the measured frequency spectra of the pressure signal.

This cylinder pressure exerts a Force both on the piston crown
and on the cylinder head surface, indicating that there are two
paths of vibration transmission. fThe first path is through the
piston, connecting rod, crankshaft, main bearings, and intoc the
block. The gsecond path is through the head and intc the block.

The vibraticn transmission characteristics of the engine
structure are determined from measurements taken in a non-running
engine of the transfer mobilities of the various components along
each vibration transmission path. fThe transfer mobility is a
transfer function which measures the ratio of the vibration
velocity at one point on the structure to the forece exerted at
another point. The mobility is measured with the instrumentation

shown in PFigure 13.
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Frequency Spectra of Measured Cylinder
Pressure on NTC-350 Engine at 2100 RPM,
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The two transfer mobilities for the paths by which com-
bustion noise is transmitted, i.e. the head-bhlock path and the
piston-connecting rod path, are measured mobilities of one-third
octave band averages of mobilities measured between eight points
on the block and three cylinders. A prediction of the block
vibration due to combustion when the engine is running is
obtained by multiplying the total mobilities for each path by
the combustion force {preasure times plston area) and adding the
contributions from each path. A comparison of this predicticn
of block wvibration due to combustion with the measured vibration
during operation of the engine is shown in Figure 14. The com-
parison shows that except for the frequency band at 3200 Hz,
combustion is not a major source of block wvibration and therefore

is not a major source of noise for this engine.

B. Piston Slap

The source lavel of piston slap cannct be measured directly
by any known methods. Therefore, an indirect measurement pro-
cedure has been used to determine the magnitude of the force
generated. Thils was done by measuring the leocal wvibration
response of the cylinder liner at a polnt on the liner where
piston slap is believed to occcur. Figure 15 shows a typical time
response of the liner vibration during operation of the engine
and the corresponding velacity spectrum. A second experiment was
conducted to measure the drive-point mobility at the same point
on the liner where the vibration response was measured. Since
the drive-point mobility is the ratio of the velocity to the
applied force at the point where the force is applied, the force
generated by piston slap can be determined by dividing the mea-
sured veleocity level by the drive-point mobility. Results are
shown 1in Figures 16 and 17.

The vibration transmission path from piston slap to the
engine surfaces is primarily through the liner and block side
walls for the NTC-350. The transfer mobility between the
cylinder liner and the block side walls is shown in Fiqure 18.
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Combining the force excitation level of the piston slap with
the measured transfer mobility gives a prediction of the engine
block vibration due to piston slap. Figure 19 compares this
prediction with the measured vibration levels f[or the left block
aide, which Ls the maior thrust side and the major radiating
surface. This comparison shows that piston slap is a major
saurce of block vibration, and therefore radiated noise, in the
frequency range from 500 to 5000 Hz with a peak at 2000 Hz.

c. Injector Forces

The NTC-350 Big Cam One is equipped with PT injectors, each
of which injects fuel into a cylinder by means of a cam-driven
plunger. A direct measurement af the dynamic force generated
during injection is difficult. Therefore, an indirect measure-
ment of the injector source level was cobtained in a procedure
similar to that done for piston slap. The velocity of the
injector rocker was measured during the operation of the engine
and 1s shown in Figure 20. The designed velocity level of the
injector cam follower is also shown by the dashed line. It can
he seen that the plunger exhibits a large vibration near the end
of injection with a large 1600 Hz component in the spectrum and
a sharp drop beyond that point in the frequency spectra.

The force exerted on the injector plunger was obtained by
dividing the velocity spectrum of the plunger by the measured
mobility of the piunger in its Ffully assembled condition (see
Figura 21).

Forces generated by the injectors are transmitted to the
engine block by two paths: the first through the injector rocker
box to the head and the engine block, and the second through the
cam push~rods, camshaft, bearings, cam dears to the block. The
vibration transmission through each path was determined by
physically disconnecting the injector plunger from the cam drive
traln and exciting the structure with a shaker attached to one
or the other of the disconnected members. The resulting measured
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transfer mobilities to the block are shown in Figure 22. The
path through the camshaft dominates the vibration transmission
ahove 2000 Hz.

Combining the force excltation level of the injector and the
measured transfer functions to the block gives a prediction of
the engine block vibration due to the injectors. Figure 23
compares this prediction with the measured block vibration levels
during operation of the engine. The comparison shows that the

injectors are a major source of vihration at 1600 Hz.

D. Vibration Transmission of Non-Load Bearing Covers

By summing the contributions to block vibration from the
major sources, piston slap and injectors (see Figure 24), a
nearly complete model of the engine vibration can be obtained
for this specific engine. In order to complete the model it is
necessary to relate the vibration of non-load bearing covers,
such as the oill pan, valve covers and front cover to the block
vibration since these covers can be major radlating surfaces,
Following the mobility approach the vibration transmission from
the block to covers has been determined by combining measured
mobilities on a non-running engine with measured block vibration
levels., Examples of the moblilities for the o0il pan are shown in
Figure 25. A prediction of the ratio of velocities of the oil
pan and the block is shown in Figure 26 along with a ratio deter-
mined from measured data. The comparison shows that the oil pan
has higher wvibration levels over most of the frequency range of

interest.

E. Noige Radiation

To complete the modeling, the noise radlated by each engine
surface must be related to the predicted velocity. The approach
chosen was determining a radiation efficiency by simultanecusly
measuring the surface vibration and the sound power radiated

using the acoustic intensity technique. The measured values of
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radiation efficiency were combined with the prediction of block
and cover vibration to generate a prediction of the noise
radiated hy the engine. Results are shown in Figure 27 and are

compared to the total measured sound power levels, There is good
agreement between prediction and measurement except in the 300
to 500 Hz range.
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IV, HNOISE REDUCTION DESIGNS

The objective of the work presented in this report was to
demonstrate a method of achieving a 5 dB reduction of in-truck
noise. Toward this end we have developed new and lnproved
modeling procedures that allow us to predict the major sources of
high frequency engine vibration and to understand the paths by
which that vibration is transmitted to the surfaces of the engine
and radiated as nolse.

Based on the results obtained in the modeling phase, it is
apparent that the major source of high frequency vibration for
the NTC-350 Big Cam One is piston glap, with lesser contributions
to overall A-weighted truck sound power levels from injectors and
combustion. As can be seen in Figure 2B, piston slap dominates
the spectrum from 500 Hz to 8 kHz with egual contributions by
injectors at the 1600 Hz bandwidth.

The combustion source is important helow 500 Hz and at
frequency bands of 3.15 to 4 kHz. The limited contribution of
the combustion process to overall A-weighted sound power levels
is common to turbo-charged engines and the peak in the frequency
spectrum of the combustion model can be correlated to the cavity
resanances of the combustion chamber.

Despite the overall domination of piston slap as the major
noise contributor, it was felt that to achieve an overall 5 4B
reduction in truck noise it would be necessary to treat all
three sources, piston slap, injection, and combustion, since the
expected reduction in transmission of piston slap excitation
would result in a 4 dBA overall noise reduction. Our approach
to reducing the noise from these sources was to modify the engine
structure to reduce the vibration transmission f£rom each source
to the radiating surfaces. Other methods Ffor achieving the
desired noise reduction included: (a) modifying the sources to
reduce the impulsive forces generated during injection and piston
slap, (b) using engine covers and enclosures to reduce the noise
radiation from the vibrating engine surfaces, and/or (e) using
damping and vibration isolation treatments to reduce the

40



|

120_: - *+ * T I T I
I e e :%
ook /3 da 1% ¢
= NI el 8 G
- 90§ % \éi\g f / §§ z;@\y e -
“ =\ f ] ié\{ &, ]
S S T < N I N S S
sob—f & B INA ENE F G
= b Y o: ;3 i
= 5 T /J:a‘: T
~ e o T i + Ti X I I -
[ A A O I IS
B T I T DI A N R S
NI

o0 500 1Kk 2K g 8x 16k

125 250
FREQUENCY (Hz)

% - --X INJECTOR MODEL
o—-0 MEASURED

o—p COMBUSTION MODEL
a——a PISTON SLAP MODEL

i
i Figure 28. Contribution of Sources to Overall A-Weighted
Truck Sound Power Levels on NTC-350 Engine at

{

| 2100 RPM, Full Load
|
|
! 41
i
]

ML e e 0 N S N e T ot b e n e e b i b R R 15




M

vibration and noise radiation from non-1load bearing covers and
shields. These other technigues are valid noise control pro-
cedures and have received a great deal of attention by others
working in the area of engine nolse reduction. In our work we
have not eliminated these techniques from consideration, hut have
not spent any time developing them becauae of the work already
done by others and hecause of our belief that modification of the
engine structure is the most cost-effective means to achieve our

5 dB noise reduction goal.

A, Piston Slap Noise Reduction Designs

In order to reduce the contribution of piston slap excita-
tion to overall noise generation, the three primary paths of
vibrational energy transmission from the excitation point to the
radiating surface were examined. It became apparent that the
major transmission path is from the top liner attachment point to
the upper block and from there toc the lower radiating surfaces.
In seeking to alter this path two other possible arrangements
for attaching the liner to the engine structure were considered.

The first alternate approach involved suspending the liner
midway in the block right under the top water jacket. The second
approach called for attaching the liners to the head through some
fastening arrangement. To use elther approach we found that it
would be necessary to increase the wall thickness of the liner to
achieve a higher local impedance resulting in a decrease of power
flow from the piston to the liner during piston impact. A more
detailed discussion of both approaches is given in the following

paragraphs.

1. Midway Suspended Liner

The primary reason for suspending the liner midway on the
block is the relative ease of implementing this design change.
Since the engine block is an in-~line configuration, however, and
the lower attachment point is not necessarily stiffer than the
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original attachment locabinn (as is the case for an engine block
of vee construction [1]) certain doubts were raised based on our
fundamental design principles. We believe that to achieve a
major reduction in the contrinhution of an excitation mechanism to
overall noise by making a structural change in the transmission
path, it is necessary to create a substantial impedance mismatch
along a particular path. The wismatch is needed to achieve the
reflection of vibrational energy back toward the excitation
mechanism and the high damping values possibly associated with
this occurrence.

In the cage of the transmissien path for the midway
suespended liner, the increase of the liner stiffness resulted in
the need for a stiffer attachment point to the block so that an
impedance mismatch could be achieved. Achieving a softer attach-
ment point for the purpose of an impedance mismatch presented the
problem of selecting an isolation material that would have the
proper stiffness and the proper load capabilities te sustain the
relatively high clamping loads applied to the liner top in order
to achieve combustion seal. These clamping loads are in the
magnitude of 40,000 to 60,000 PSI.

In determining the appropriateness of the midway attachment
of the liner to the block, several measurements of the drivepoint
impedance and the transfer impedance were conducted at the pro-
posed liner attachment point and from that location to six lower
block locations. The results shown in Figure 29 support our
argument that the transfer of vibrational energy through this
attachment peoint is not reduced and in certain cages actually
increases. This design approach was rejected, therefore, in
favor of the attaching the liner to the head.

2. Liner Attachment to the Head

When the design having the liner attached to the head was
originally conceived, it appeared to have great potential for
reducing the contributions of piston slap and combustion to
overall noise reduction. However, it required major changes in
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regard Lo engine maintenance and assembly procedures. The basic
design involves Lthe attachment of the top portion of the liner to
a machined groove in the Flre deck of the head (see Figure 30}.
The fastener of the liner to the head Efor combustion sealing and
alignment was designed to be a threaded connection using a low
taper 10° thread pattern which enahles a better load distribution
characteristic than standard 45° threads. The primary reason for
having liners attached to the head which can be separated for
maintenance as opposed to casting the liners and head as an inte-~
gral part, is that most heavy duty engines are designed with the
intention of replacing liners when they are worn down rather than
over-gizing the bores.

Another feature of this design approach is isclating the
head from the block by using a relatively compliant material
between the fire deck of the engine head and the top deck of the
block ag well as isolating the head holts from the head (see
Figure 31 for bolt isolation design).

The attachment of the liner to the head eliminates the need
for applying a high preload on the head gasket by the head bolts
in order te achieve a compression seal. This allows installation
of a softer gasket material in between the head and the block so
that an effective isolation can be achieved. The isolation,
coupled with the lower power flow into the liner resulting from
the higher local impedance, should yield a substantial reduction
of piston slap contribution to overall noise.

The primary change concerning engine assembly caused by this
design approach is the necessity for installing the pistons in
the liner prior to installing the liner head asgembly to the
engine block. In order to facilitate production of a demonstra-
tion engine within cost and time constraints, we found that the
following compromises had to be made:

a. the production of the prototype liners from
retrofitted standard liners rather than from new
liner castings, preventing us from having sub-
stantially thicker liners uas orlginally requested.
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h. the attachment of the liners to the head by
soldering rather than by threading, which created

substantial machining problems.

c. a small shift in the standard compression ratioc by
about 2% as a result of using standard retrofitted

liners,

A mock-up assemnbly of the liner-head attachment was con-
structed to evaluate its dynamic affectiveness in a non-running
engine. fTransfer path analysis was carried out to four lower
block points from piston slap excitation location and the results
are shown in Figure 32. It can be seen that in the frequency
range from B0O0 Hz to 5 kHz there is an average of B.5 AB reduc~-
tion in the vibrational energy transfer compared to a standard
liner configuration., BAn additional 3 dBA reduction could be
achieved by increasing the liner thickness as specified by our

original design.

B, Combustion Excitation Source Reduction

Based on the conclusions derived from the modeling effort,
it is apparent that treatment of piston slap excitation alone
yields on the order of a 4 4BA noise reduction. If this reduc-—
tion were not sufficient, it would be necessary Lo treat the
contribution of combustion excitation to avarall noise. The
primary contribution of combustion excitation and its associated
transfer paths to the noise spectra lies in the frequency range
from 3.15 to 4 kHz. The two major transmission paths are the
piston~connecting rod-crankshaft-lower block and the head-upper
block~lower block. Since the path through the head can be
treated by noise reduction designs for piston slap, the focus
is ghifted on treating the path through the piston.

To treat the transmissien path through the piston, a 4design
was developed involving the application of a set of resilient
bearings. The resilient bearings are installed at the main

47



- 7 0 — - el ad - wt - —t - g -

- T + - + T T £ T :

®  -gop—t—rtf——t—— o ¥

2 - ¥ T = T + o 3

= - T . T T oy iy i . =

= T T T T T T T -

- ~90[ -+ -+ + - T T T T -

- o i x €L T x I L =

o S + 0t B K s LS £ =
.- - T T T + + -+ + * =
L -100} -+ + —STFAND-ARD— + + .

o = + T ¥ T T + TS

e~ = T -+ n = -+ =+ =

> - T + t -+ . V T ¥ -

St = . al= e -t - - -k -
V10Ol TETED TINER & L =

3 = (BRLTED HERD) £ R R NOPIFIED L

S E i E DY iisdiarep e

o ~120—¢ T - T + T =

™ = T T T o £ by -

™ - 18 0f—F—F—F— =
- + T - I ¥ -+ T -+ -]
- ¥ ¥ ¥ ¥ F¥ F F F 3

~ T T ’ T T o + i+ -

-140 :
125 250 500 1k

Engine

48

o]
=

Ly
FREQUENCY (Hz)

Figure 32. Transfer Mobility of Piston Slap Force to Block
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hearings of the crankshaft and result in the reflection of vibra-
tional energy hack toward the source. The high damping values
attributed to the piston motion also creake a substantial bene-
fit. The treatment uaing resilient bearings could potentially
yield a reduction of vibrational energy transfer excited by
piston slap. This has already been demonstrated on other engines
where in particular frequency reglons the transmission of piston
slap excitation is dominated by the path through the piston

rather than by through the liner.

c. Injection Excitation Source Reduction

o A final step in reaching a 5 dB or more truck noise reduc-
tion involves reducing the excitation generated by the injection
process at the 2 kHz bandwidth. Since the main transmission
path of this exeitatlon is through the rocker box, a design was
created to isolate the rocker arm shaft from the rocker box using
a freguency tuned resilient mounting bearing. This alleviates
the problem without affecting the injection performance require-
ments (see Figure 33 for the modiflcation schematic).
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V. CONCLUSIONS

Tis report has described a demonstration of the use of
transfer path analysis in the investigation of major noise
contributors and their transmission paths within a heavy duty
digsel engine, the NTC-350 Big Cam One. The report also
describes suggested methods for reducing the contribution Erom
the various sources to overall noise emission which involve
alterations to the transmission paths of the sources.

™e following briefly summarizes our conclusions from

this study:

1. Transfer path analysis is a valuable tool for
gaining an understanding of the noise emission

mechanisms in diesel engines.

2, In the case of the NTC-350 Big Cam One diesel engine
piston slap is the major noise contributor and by
adequate treatment applied to this source a 4 dBA
eoverall noise reduction can be achieved.

3. The proposed method for reducing the piston slap noise
contribution by attaching the liners to the head and
isolating the head from the block appears to be a viable
technique having significant noise reduction potential
even though it has not yet been tested in a running
engine and is considered to be a somewhat unorthodox
practice in common engine design.
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