

A Practical Application of Community Noise Analyses; --Case Study of Allegheny County, Pennsylvania

R.J. Goff M.P. Valoski R.E. D'Amato

February 1977

Approved for public release; distribution unlimited.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official indorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army or Environmental Protection Agency position, unless so designated by other authorized documents.

	PAGE	RRAD INSTRUCTIONS DEFORE COMPLETING FORM			
I. MEPORT HUMBEN	A GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER			
EPA 550/9-77-400					
A PRACTICAL APPLICATION OF COMMUNITY HOISE AMALYSES: CASE STUDY OF ALLEGHENY COUNTY,		FINAL			
PENNSYLVÁNIA	,	S. PERFORMING ONG. REPORT HUMBER			
7. AUTHOR(+)	· · · · · · · · · · · · · · · · · · ·	S. CONTRACT OR GRANT HUMBER(*)			
R. J. Goff M. P. Valoski R. E. D'Amato		IAG #73217EAPE			
US ARMY CONSTRUCTION ENGINEERING RES P.O. Box 4005 Champaign, IL 61820	SEARCH LABORATOR	10. PROGRAM ELEMENT, PROJECT, TASK			
US Environmental Protection Agency		18. REPORT DATE February 1977			
Office of Noise Abatement and Contro Washington, D.C. 20460	1	13. HUMBEN OF PAGES			
IA. MONITORING AGENCY HAME & ADDRESS(II dilleren)	from Controlling Office)	IF. SECURITY CLASS, (of this report)			
		Unclassified			
		ISA, OKCLASSIFICATION/DOWNGRADING			
17. DISTRIBUTION STATEMENT (of the abeliant entered in	s Black 20, 11 different fred	n हिम्म्स)			
B. BUPPLEMENTARY NOTES	4				
SUPPLEMENTARY NOTES KEY MORDS (Continue on severes side if necessary and community noise egislation	Monthly by Black number)				

and legislation are detailed. First, metrics are selected for describing a

DD 1 JAM 75 1473 EDITION OF 1 NOV 44 IS DESOLETE

UNCLASSIFIED

BECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Block 20 continued.

community noise environment. Specific parameters influencing community noise are evaluated and used to develop a survey methodology. Survey data are presented and analyzed according to such parameters as time of day, noise source, land use, and municipality. Finally, the results are incorporated into community noise legislation.

UNCLASSIFIED

BECURITY CLASSIFICATION OF THIS PAGE MAN Dets Salered

ACKNOWLEDGMENTS

The following individuals are acknowledged for their efforts toward the noise control program in Allegheny County: T. Henderson, E. Smuts, L. Doerfler, P. Pelkofer, H. Dick, D. Giardino, F. Loefler, S. Rosenback, G. Fehr, and O. Muhonen (all members of the Citizens Advisory Committee); and T. Hartman, K. Wright, J. Duckett, W. Gerhold, and F. Tuplin (Allegheny County staff members).

TABLE OF CONTENTS

D	D FORt	1 1473	1
٨	CKNOWL	EDGMENTS	111
1	INTR	ODUCTION	1-1
2	STAT	ISTICAL ANALOGY	2-1
3	METH	ODOLOGY	3-1
	3.1	Type of Frequency Weighting	3-1
	3.2	Number of Measurement Locations	3-1
	3.3	Location of Measurement Sites	3-2
	3.4	Frequency of Measurements	3-6
	3.5	Zoning/Land Use	3-8
	3.6	Effect of Various Factors on Sound Propagation and Attenuation	3-8
4	DATA	GATHERING PROCEDURE	4-1
5	RESU	LTS	5-1
	5.1	Results of BSSU Analysis	5-1
	5.2	Hour-by-Hour Analysis	5-4
	5.3	Source-by-Source Analysis	5-8
	5.4	Zoning/Land Use Analysis	5-11
	5.5	Noise-Sensitive Area Analysis	5-18
	5.6	Municipality-by-Municipality Analysis	5-18
		5.6.1 Analysis for the City of Pittsburgh	5-20
6	CONC	LUSIONS	6-1
7	REFE	RENCES	7-1
Af	PENDI	K A. Proposed Allegheny County Noise Legislation	A-1
AF	PENDI	K B. Sample of Raw Noise Survey Data	B-1

FIGURES

<u>F1gure</u>		Page
2-1	Pattern of A-Weighted Sound Levels at Urban Sites	2-2
2-2	Example of Random Fluctuations of an Urban Noise Signal	2-3
2-3	Sample Histogram and Cumulative Distribution of A-Heighted Sound Levels	2-4
3-1	Division of Allegheny County into USGS Rectangles	3-3
3-2	Individual BSSU's of Allegheny County	3-4
3-3	Sampling Elements for BSSU Used in Allegheny County Survey	3-5
3-4	Pattern of A-Weighted Sound Levels at Urban Site over a 24- Hour Period	3-7
4-1	Schematic of Data-Measuring and Analyzing Equipment	4-1
4-2	Detailed BSSU #0628	4-2
4-3	Field Data Sheet for BSSU #0628	4-3
5-1	Computer Anlysis for BSSU #0628	5-2
5-2	Anti-Degradation Map of Allegheny County	5-5
5-3	Computer Analysis for Measurements Taken from 0900 to 1000 ilours	5-6
5-4	Hour-by-Hour County-Wide A-Weighted Sound Levels	5-7
5-5	Computer Analysis of Measurements with Traffic (01) as the Major Noise Source	5-9
5-6	Increase in A-Weighted Sound Levels Caused by Commercial or Industrial Activity	5-15
5-7	Hour-by-Hour L ₉₀ A-Heighted Sound Levels According to Zone	5-16
5-8	Computer Analysis by Source and Zone Sorting	5-17
5-9	Cumulative Distribution Plots for Noise-Sensitive Areas	5-19
5-10	Municipality-by-Municipality Noise Analysis	5-21
5-11	Individual BSSU's Comprising the City of Pittsburgh	5-24
5-12	Computer Analysis for Measurements Taken in the City of Pittsburgh	5-26
5-13	Computer Analysis for Measurements Taken in Allegheny County	5-27

TABLES

<u>Table</u>		Page
2-1	Yearly Average Equivalent Sound Levels Identified as Requisite to Protect the Public Health and Welfare	2-6
3-1	Allegheny County Consolidated Zoning	3-9
4-1	Municipal Computer Codes	4-4
4-2	Noise-Sensitive Area Computer Code	4-6
4-3	Noise Source Computer Code	4-6
5-1	Range of A-Weighted Sound Levels of BSSU's	5-4
5-2	Hourly Measurement Results	5-8
5-3	Noise Source Analysis	5-10
5-4	Zone-by-Zone Analysis	5-12
5-5	Combination Zone-by-Zone Analysis	5-13
5-6	Existing A-Weighted Sound Levels Across Zone Property Lines	5-14
5-7	Noise-Sensitive Area Analysis	5-18
5-8	Municipal Noise Analysis	5-22
5-9	Average L ₁₀ , L ₅₀ , and L ₀₀ A-Weighted Sound Levels (Pittsburgh)	5-25

REST AVAILABLE CODY

SECTION 1. INTRODUCTION

People must be realistic in accepting the fact that noise control is expensive, whether it is to be applied in the workplace or in the community. Government, industry, and the public will all have to make financial expenditures in order for a program to succeed—the government for establishment of the program and the others for compliance with the program—and the more complex and industrialized an area is, the more the program will cost. Thus, if noise control regulations are going to be enacted, it is imperative that they have a firm technical foundation. The reasons are twofold. First, if technology is going to be developed or used to reduce noise to a specific level, then that level must be correct; second, when that legislation is challenged in the courts—and it is inevitable that all environmental noise legislation will be challenged—it must be able to stand up to an extensive legal and technical cross—examination.

During 1973-1976, Allegheny County, Pennsylvania, undertook an extensive Community Noise Program whose end results were to have been such legislation. An integral part of that program was a comprehensive community noise survey to determine present noise levels and to identify major noise sources. The purpose of this report is to document the technical results of both the noise program and noise survey so that the methodology developed will be available as guidelines for future efforts.

Allegheny County, encompassing the City of Pittsburgh and 127 smaller municipalities, is a heavily industrialized area located in southwestern Pennsylvania. Major industries include mining, manufacturing, and trucking, with an emphasis on steel and coal. A number of years ago, Allegheny County pioneered stringent air regulations which were enacted after bitter legal struggles. Although significant progress has been made in cleaning up the air, these regulations are still being contested in the courts. Therefore, despite demands by private citizens and environmental groups for community noise legislation, the local industries were reluctant to submit to additional environmental constraints. Besides the financial considerations, they did not want any more environmental precedents to be established in Allegheny County. For a noise program to survive in this type of atmosphere, any proposed legislation would not only have to be realistic and enforceable, but would also have to have a firm technical foundation for each section. General or nuisance type regulations prohibiting "unnecessary loud noises" would not be effective in this situation. 1-1

During the planning stages of the Allegheny County noise program, it was anticipated that noise legislation could be based upon the numerous state and local ordinances already in existence. However, a detailed analysis of these programs indicated that only a handful were funded and even fewer had regulations that were being enforced. Furthermore, the technical documentation for these programs did not seem adequate for an area having both the size and uniqueness of Allegheny County with its 1700 sq kilometers (650 sq miles), 1.5 million people, 3 major rivers, and numerous hills and valleys. In addition, after studying several legal decisions on environmental issues, it was concluded that merely inserting the name "Allegheny County" into an ordinance initially drafted for Chicago or New York would not insure that the document could stand up to either legal or technical cross-examination. It is one goal to merely draft legislation and an entirely different goal to enforce that legislation. Since Allegheny County initially planned to do both, an extensive three-phase program was developed.

The first phase consisted of the county-wide noise survey. In the second phase, legislation was drafted based upon the survey results, presented at public hearings and revised for final adaption. In phase three, an enforcement agency was to have been established. Although the program was terminated before this final phase could be completed, much information was gathered, particularly during the Phase I survey. Besides establishing the technical foundation for the proposed Allegheny County community noise legislation, it also provided a baseline which was to have been used to prevent future increases in the existing acoustic environment.

This report describes the methodology used in the Phase I survey, documents the results, and, perhaps most important, investigates ways to formulate legislation based upon the results of that survey. Its organization is as follows: In Section 2, the existing statistics used in evaluating community noise are detailed and specific metrics for the Allegheny County survey are selected. Section 3 develops methodology needed to gather noise data based upon such considerations as quantity of sites, locations and time of measurements. The actual data recording procedure is outlined in Section 4. The results are analyzed in Section 5 according to such selected parameters as time of day, source, land use, and municipality. In each analysis, techniques were sought to present the data in a format that could be incorporated into legislation. While all the outlined techniques were not applicable to Allegheny County, they were nonetheless documented for possible use in other geographic areas.

The conclusions are listed in Section 6. Finally, selected portions of the proposed noise code are presented in the appendices along with samples of raw survey data.

THE PERSON OF TH

The dominant characteristic of community noise is its continuous fluctuation with time in a more or less random nature. This is illustrated in Figure 2-1, which shows how the noise at several different locations varies with time during a 2-minute period. The figure also identifies the sources of some of the conspicuous intruding sounds. Notice that in each case, the noise tends to hover around a low amplitude much of the time and that individual events intrude on this level to create peaks.

Next, consider a typical random time-varying pattern of community noise shown in Figure 2-2. The probability that the instantaneous Λ -weighted sound level lies between the levels L_1 and L_1 + Δ is given by:

$$P(L_1; L_1 + \Delta L) = \int_{i=1}^{4} \frac{\Delta ti}{T} = \frac{\Delta ti_1 + \Delta ti_2 + \Delta ti_3 + \Delta ti_4}{T}$$
(1)

At # time interval in seconds

T = total duration of signal in seconds, and

L = instantaneous A-weighted sound level

By knowing the percentage of time the A-weighted sound level lies in a narrow range such as AL, a probability density curve can be determined. The results may be plotted as a histogram to show the statistical distribution of the levels over the sampling period, i.e., the percent of time the A-weighted sound level spends in each class interval. However, a better statistical presentation of community noise is the cumulative distribution. This is obtained by adding the histogram data to determine the percent of time each A-weighted sound level is exceeded during the sampling period. A typical histogram and cumulative distribution are shown in Fibure 2-3. The various percentile levels do not represent directly measured data, but rather values inferred from the frequency distribution. In addition, the fluctuation of the noise can be determined from the cumulative distribution plot. If the curve is vertical, the noise is constant, while a slope indicates substantial fluctuations.

A community noise environment can be described using three percentile levels from the cumulative distribution in Figure 2-3. These are the levels exceeded 90 percent, 50 percent, and 10 percent of the time, which are designated by symbols L_{90} , L_{50} , and L_{10} . L_{10} .

^{*} Superscripts refer to references on p. 7-1.

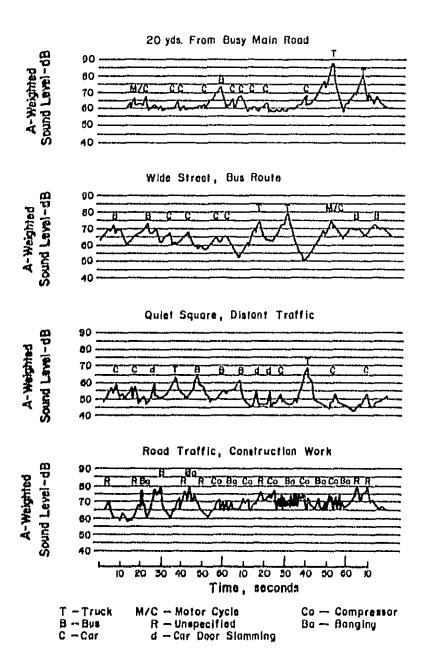


Figure 2-1. Pattern of A-Weighted Sound Levels at Urban Sites⁴ 2-2

THE PERSON NAMED OF THE PERSON OF THE PERSON

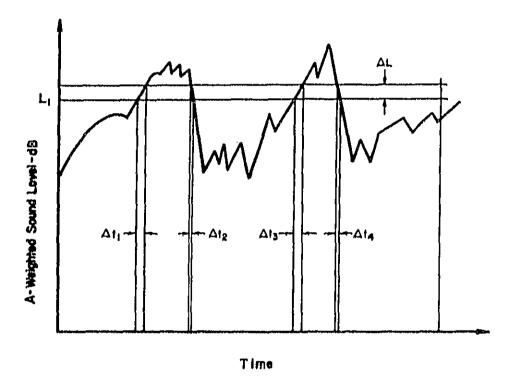


Figure 2-2. Example of the Random Fluctuations of an Urban Noise Signal⁵
2-3

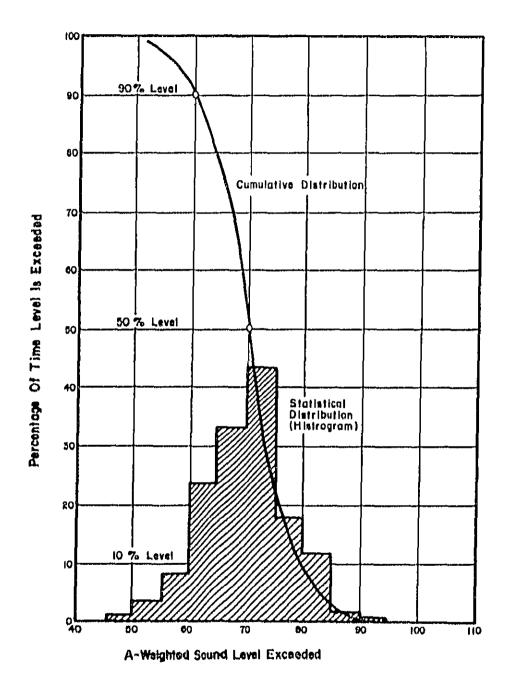


Figure 2-3. Sample Histogram and Cumulative Distribution of A-Weighted Sound Levels⁵ 2-4

The L $_{90}$ parameter indicates the residual background or ambient level. 6 It represents a low-level, quasi-steady, slowly changing noise for which no single source is identified. The L $_{10}$ and L $_{50}$ levels indicate the effects of the intrusive noise events. These are superimposed on the ambient noise, such as the aircraft overflight intruding a quiet neighborhood. The quantity L $_{10}$ - L $_{90}$ has sometimes been called a measure of the noise climate, since it indicates the range in which noise occurs most (80 percent) of the time. 7 This quantity can be used to determine the fluctuations in the ambient noise and to measure the potential for disturbance. For example, while the sound of that aircraft overflight (L $_{10}$) is hardly noticeable at a busy intersection where the L $_{90}$ is high, it is very intrusive in a quiet, residential neighborhood where the L $_{90}$ is low.

Perhaps the most accurate parameter used to describe a community noise climate in relation to human response is the equivalent sound level or $L_{\rm eq}$. This parameter was recommended by the Environmental Protection Agency in Reference 8, and is summarized in Table 2-1. $L_{\rm eq}$ is formulated in terms of the equivalent steady A-weighted sound level which, in a stated period of time, would contain the same noise energy as the time-varying noise during the same period. The mathematical definition of $L_{\rm eq}$ for a signal occuring between two points in time, t_1 and t_2 , is:

$$L_{eq} = 10 \text{ Log } \left[\frac{1}{(t_2 - t_1)} \right] t_1^2 \frac{p^2(t)}{p_0^2} dt$$
 (2)

where: p(t) is the time-varying A-weighted sound level and Po is a reference pressure taken as 20 micropascals

When the noise exposure in a community has a level distribution that approximates a normal or gaussian distribution, the $L_{\rm eq}$ can be described in terms of the $L_{\rm 50}$ value and standard deviation, s:

$$L_{eq} = L_{50} + 0.115s^2$$
 (3)

Also, for the normal distribution, the L_{10} value can be specified in terms of the L_{50} value and standard deviation, s:

$$L_{10} = L_{50} + 1.28s$$
 (4)

Combining equations 3 and 4 yields:

$$L_{10} - L_{eq} = 1.28s - 0.115s^2$$
 (5)

and the little with the second of the first of the little with the control of the control of the second of the sec

BEST AVAILABLE COPY

Table 2-1
Yearly Average Equivalent Sound Levels Identified as Requisite to Protect the Public Health and Welfare 0

		Ind	oor	<u>Out</u>	door
	Measure	Activity Interference	Hearing Loss Considerations	Activity Interference	Hearing Loss Considerations
Residential with Outside Space and Farm Residences	L _{dn}	45		55	
white and term inchientings	Leq(24)		70		70_
Residential with no Outside Space	Ldn	45			
oneside Space	Leq(24)		70		
Commercial	L _{eq} (24)	٨	70	*	70
Inside Transportation	Leq(24)	*	70		
Industrial	Leq(24)	*	70	*	70
Hospitals	Ldu	45		55	
	L _{eq} (24)		70		70
Educational	Leq(24)	45	70	55	70
Recreational Areas	Leq(24)	*	70	*	70
Farm Land and General Unpopulated Land	L _{eq} (24)			*	70

^{*} Since different types of activities appear to be associated with different levels, identification of a maximum level for activity interference may be difficult except in those circumstances where speech communication is a critical activity.

from which can be deduced

$$L_{eq} = L_{10} - 2 \text{ dBA},$$
 (6)

which has an accuracy within $\frac{1}{2}$ 2 dB for $0 \le s \le 11$.

Another recommended community noise descriptor is the day-night A-weighted sound level or $L_{\rm dn}$. This parameter, which is also listed in Table 2-1, is defined as the equivalent A-weighted sound level during a 24-hour time period with a 10-decibel weighting applied to the equivalent sound level during the nighttime hours of 1000 to 0700. The mathematical expression is:

$$L_{dn} = 10 \log_{10} \left[\frac{1}{24} \left[15(10^L d^{10}) + 9(10^{(L_n + 10)/10}) \right] \right]$$
 (7)

where: $L_d = L_{eq}$ for daytime hours (0700-2200) $L_n = L_{eq}$ for nighttime hours (2200-0700)

While time constraints prevented gathering enough information to apply $L_{\rm dn}$, the other statistical parameters, L_{10} , L_{50} , L_{90} , and $L_{\rm eq}$ were used in the following sections to define the acoustical environment of Allegheny County.

SECTION 3. METHODOLOGY*

In any community, the noise levels and their corresponding statistical parameters will form certain spatial and temporal patterns. These are affected by such activities as traffic flow, construction, industrial operations, etc. Therefore, any attempt to describe a community noise environment must consider these and a number of other physical quantities related to the noise sources. As a result, the methodology for the Phase I survey had to make the following determinations in order to obtain data which were both statistically reliable and representative of the noise climate in Allegheny County.

- 1. Type of frequency weighting
- 2. Number of measurement sites
- 3. Location of measurement sites
- 4. Frequency of measurements at each site
- 5. Zoning/land use
- 6. Effect of various factors on sound propagation and attenuation

3.1 Type of Frequency Weighting

For many sounds, particularly those with broadband spectra and no prominent pure tones, the A-weighted sound level is as good as more complicated ratings for measuring a subjective response. These dB levels can also be measured directly in the field with a small inexpensive instrument or taped on a magnetic recorder for analysis at a future date. It is for these reasons that the A-weighted level was chosen as the basic measure of community noise.

3.2 Number of Measurement Locations

In order to determine the spatial variations of A-weighted sound levels in Allegheny County, a finite number of measurements had to be taken. To accomplish this a sampling area called the basic spatial sampling unit or BSSU was defined. The BSSU selected for this analysis was a two-dimensional square encompassing an area of 3.1 sq kilometers (1.2 sq miles); this size was sensitive to changes in noise levels produced by high-speed expressways, aircraft flight paths, or other localized (moving or

^{*}This methodology was developed directly from Reference 5.

stationary) sources of noise.⁵ The division of Allegheny County into these BSSU's is illustrated in Figures 3-1 and 3-2. In Figure 3-1, the county is divided into rectangles with dimensions of 13.6 X 9.6 kilometers (8.5 X 6 miles). Each rectangle corresponds to the USGS* 880 series map and contains two 4-digit numbers. The first two digits represent a specific 880 series map number; the second two represent the range of BSSU's within each rectangle. (Each rectangle contained 35 BSSU's). The 659 individual BSSU's comprising the entire county are detailed in Figure 3-2. As an illustration, BSSU #2501 represents the first BSSU in USGS 880 series map #25. Similarly, BSSU #0835 represents the 35th BSSU in USGS 880 series map #08.

The number of measurement locations required within each BSSU is directly related to the homogeneity of the area with respect to the type, number, location, and distribution of noise sources. For example, consider the extreme case of the Mohave Desert and an area such as the City of Pittsburgh. On the desert where the noise levels are steady, one site would adequately represent the noise climate of many square miles. In Pittsburgh, one measurement location would most likely be representative of a very small localized area.

For this survey, 25 sites per BSSU were used inside the City of Pittsburgh, and 16 sites per BSSU were used for the rest of the county. The number 25 was determined from Reference 5, which assumed that the L_{90} A-weighted sound level was normally distributed between measurement locations, that the standard error was 5 dB for 95 percent confidence, and that the average L_{90} A-weighted sound level would be accurate within \pm 2 dB. The number 16 was an adjustment after the City of Pittsburgh had been completed in order to expedite the survey.

3.3 Location of Measurement Sites

After the number of measurement sites was determined, each BSSU was divided into a corresponding number of sampling elements by using a square grid pattern with lines spaced at equal intervals. The actual measurement locations were placed at the geometric center of each sampling element or as close as possible to the intersection of two streets. If there was no developed land in the sampling unit, a measurement was not taken. The advantage provided by this system was that the location of the resultant grid intersection points would be independent of any bias while providing a maximum of different locations. A BSSU with 25 sampling elements and 25 measurement locations is shown in Figure 3-3.

^{*}United States Geographical Survey

Figure 3-1. Division of Allegheny County Into USGS Rectangles

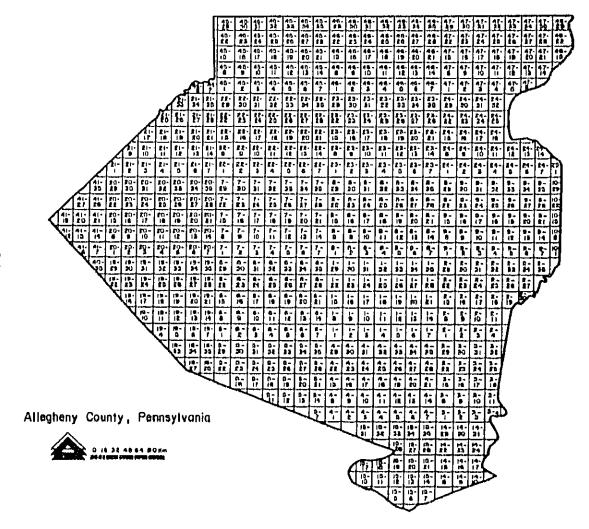


Figure 3-2. Individual BSSU's of Allegheny County

Figure 3-3. Sampling Elements for BSSU Used in Allegheny County Survey

ententententen eta erreta e

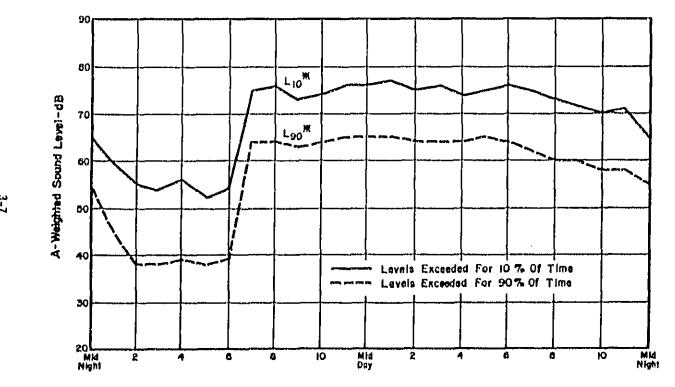
DEED WITH THE LIBRARY

3.4 Frequency of Measurements

The required frequency and length of measurements is a function of the temporal distribution of the A-weighted sound levels. Previous investigations have shown that low levels generally occur in the early morning hours, rise to a high daytime level, and fall off slowly in the evening to a low nighttime level. 1 , 0 , 9 This trend is illustrated in Figure 3-4. In addition, there may also be daily differences, particularly between weekdays and the weekend. Nevertheless, because continuous recording over a large area for a number of days would be too time-consuming and costly, some type of sampling had to be performed.

First, since realistic environmental standards could be established using worst-case conditions, a single measurement taken during the weekday between the hours of 0800 and 1700 would be used to define the noise climate of a given site.* Next, the length of this single measurement had to be determined. If the A-weighted sound levels were constant, then a few seconds duration would be adequate. Conversely, for completely random levels, a more lengthy recording would be required.

Finally, a sampling technique had to be selected. There are many schemes which usually involve one X-minute sample, where X is less than 60 minutes. One specific technique is "time compression sampling," achieved by construction an X-minute sample from a series of subsamples of shorter duration. For example, a 10-minute sample (600 seconds) can be constructed by using:


- 600 1-second subsamples, or
- 200 3-second subsamples, or
- 120 5-second subsamples, or
- 60 10-second subsamples

All of these schemes are based on the assumption that the statistical distribution of the A-weighted sound levels obtained from the X-minute sample is representative of the distribution which would be obtained from continuous sampling of the full 60-minute period.

For this survey a 10-minute tape recording was made at each measurement location and later analyzed using 6000 1/10-second subsamples. The 10-minute length was

^{*}In general, community noise legislation establishes maximum permissible A-weighted sound levels. In order to be compatible with the existing environment, the standards could be based on worst-case conditions. Thus, levels measured during the high noise period between 0800 and 1700 hours can be used as a basis for legislation. Since these levels are somewhat constant during this period, as indicated in Figure 3-4, it was decided that a single measurement would give adequate information on which to set standards.

 * L $_{10}$ and L $_{90}$ A-Weighted Sound Levels were determined for each hour of the day. Figure 3-4. Pattern of A-Weighted Sound Levels at Urban Site Over a 24-Hour Period⁴

chosen so that the maximum land area could be surveyed while still obtaining somewhat reliable data. The 6000 1/10-second subsamples provided maximum use of the information of each magnetic recording. The resulting data would later by extrapolated to define the noise climate for the entire 0800 to 1500 time period.

3.5 Zoning/Land Use

Since attempts to control noise in Allegheny County were to be accomplished partially through regulations specifying maximum A-weighted sound levels along zone property lines, the existing noise environment in each zone had to be determined. However, before the methodology could be expanded into this area, the present zoning had to be defined. Allegheny County consists of 128 separate municipalities including the City of Pittsburgh, each with its own unique zoning ordinance. Therefore, consolidated county-wide zoning criteria were established, consisting of the classifications listed in Table 3-1.

3.6 Effect of Various Factors on Sound Propagation and Attenuation

Any program to measure, analyze, and eventually control noise requires at least a basic understanding of the effects of sound propagation and attenuation. This section will briefly discuss how the propagation of airborne sound from the source to a receiver is affected by the physical environment and other factors such as meteorological conditions. These factors may be acoustically significant and must be considered in any comprehensive urban noise survey. This section is directly quoted from Reference 5.

Air Absorption

The absorption of airborne sound due to viscosity, heat conduction, diffusion, and radiation generally referred to as classical absorption is not significant in the frequency range of interest.

Meteorological Factors

The most important meteorological factors that affect sound transmission outdoors over open, level terrain are air temperature and wind velocity. They cause variations in the measured levels as a function of time and space. At relatively short distances, usually less than 1.6 kilometers (1 mile), normal variations in atmospheric conditions have little effect. At greater distances, the effects are much more significant. The effects generally cause the measured levels to be less than the expected theoretical values due to distance alone. These effects are frequency dependent, with the greatest variations occurring in the higher frequencies. For example, the attenuation will range from less than 0.1 dB per 300 meters (1000 feet) at 31.5 Hz to 2.6 dB per 300 meters (1000 feet) at 8000 Hz at a temperature of 20 degrees C (68 degrees F) and 50 percent relative humidity at normal atmospheric

Table 3-1
Allegheny County Consolidated Zoning

Classification	Symbol .	Definitions
Low-density residential	R1	One- and two-family residences with at least a 3 meter (10 foot) separation between buildings
High-density residential	R3	Multifamily residences, apartments, or homes within 3 meter (10 feet) of each other
Farmland	R5	(10 11 = 0) 01 44011
Airport expansion	RB	Former residential land purchased for the airport expansion
Commercial	C3	Structures used primarily for the sale of merchandise or for the performance of service, or for office and clerical work
Central business district	C5	Central business district
Light industrial	MI	Operations conducted entirely within an enclosed building
Heavy industrial	M4	Operations conducted outside or in semi- enclosed building
Strip mining	M6	
Airport	M8	
Special	SP	Parks, recreation areas, undeveloped land
Institutional	10	Universities
Institutional	1M	Hospitals

pressure. This attenuation is in excess of the loss due to spherical divergence, which is 6 dB for each doubling of the distance from the source.

Effect of Terrain

Sound propagation along the ground depends upon the surface roughness, the type of surface, and the topography. The acoustic impedance of a hard reflecting surface (e.g., concrete or asphalt) is very high, but for all practical purposes, the attenuation due to surface absorption is considered negligible in practice. However, ground attenuation depends upon the proximity of the propagation path to the ground, the distances involved and the elevation angle of the source.

• Effect of Precipitation

The effect of precipitation in the form of fog, drizzle, or snow on the attenuation of sound has not been studied extensively. From the limited data available, the excess attenuation caused by precipitation appears to be negligible. However, air saturated with moisture will propagate sound at a velocity faster than dry air. When sound is propagating through a medium with some precipitation present, consideration should be given to the effect on the noise when the microphone is located near the ground; the measured levels may increase appreciably. Under snow conditions, the levels may be effectively muffled. For example, when wet or snow-covered, the roadway surface directly affects tire noise. Snow tires on automobiles produce higher levels at highway speeds than conventional tires.

Effect of Barriers

The attenuation due to an acoustical barrier, e.g., a depressed highway in a cut or an elevated embankment, must be known in order to predict traffic noise levels at a measurement location. The wavelengths of sound in the frequency range of interest are generally comparable to the physical dimensions of barriers normally encountered in urban areas. The attenuation of noise will be increased under the following conditions.

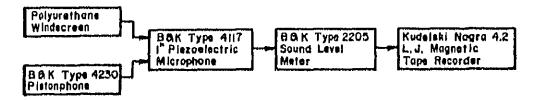
- a) the higher the frequency of the noise,
- b) the closer the barrier is to the source of noise or the receiver,
- c) the higher the barrier, and
- d) the wider the barrier.

However, the results of the studies indicate there is a limit of 15 dB to 20 dB attenuation that can be obtained in practice.

Seasonal Effect

There is little information available on how noise levels vary with the time of year. Most previous noise surveys were conducted in the spring, summer or early fall. A sensonal problem that occurs in many areas is noise from insects, e.g., crickets and peepers that raise the higher frequency band ambient levels. Wintertime measurements are difficult to obtain from the point of view of the observer's comfort, and equipment operation in cold environments. Noise surveys are generally conducted at a time of year when the air temperature and relative humidity for the area are near their median values.

The same of the sa


The results of one earlier survey indicate that ambient levels in residential areas drop 6 to 8 dB in most octave bands under winter conditions. However, this drop is undoubtedly due to the presence of snow on the road surface and the resultant change in traffic flow conditions. Because of the different character and density of the traffic during winter, traffic noise showed a drop in levels on the order of 5, 10, and 15 dB in the 400 to 800 Hz octave band for light, average, and heavy traffic flow conditions respectively. In many industrial areas, the main reason for reduced ambient levels in winter is due to the closing of factory windows.

While these factors were not studied specifically, it was hoped that the survey results could be applied to many of them in order to build up a wide data base for future studies.

SECTION 4. DATA GATHERING PROCEDURE

Once the methodology had been established, the following procedures were used to gather data. First, zoning maps were prepared for the entire county, which was then divided into BSSU's. Each BSSU was in turn divided into 16 to 25 sampling elements with a corresponding number of measurement locations. The measurement site was placed in the geometric center of each sampling element or as close as possible to the intersection of two streets. Ten-minute, A-weighted measurements were taken at each site; the sites were not sampled in numerical order but rather in a random pattern. The data for each site were then analyzed using 6000 one-tenth second subsamples, and then converted into the L_{90} , L_{50} , L_{10} , and L_{eq} statistical parameters discussed earlier. Schematics of the equipment used to obtain and analyze the data are shown in Figure 4-1.

Equipment Used To Obtain Data

Equipment Used To Analyze Data

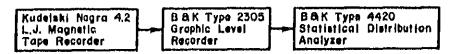


Figure 4-1. Schematic of Data-Measuring and Analyzing Equipment

To catalogue this information, special data sheets were compiled for each BSSU. BSSU 0628 and its corresponding data sheet are detailed in Figures 4-2 and 4-3 respectively. An explanation of Figure 4-3 follows: NO stands for the measurement location. For example, 062801 means the measurement was taken at the first site in BSSU 10628. LOCATION is self-explanatory. BORO represents one of the 128 municipalities comprising Allegheny County in which the site was located. Their specific codes are listed in Table 4-1. All the measurements in this particular BSSU were within the City of Pittsburgh.

العالم والمعادلة والمداركة الرواي والمراتب في التماميون الكولوائية والتفيل بالرواي والوارية المواهية المتعاركة

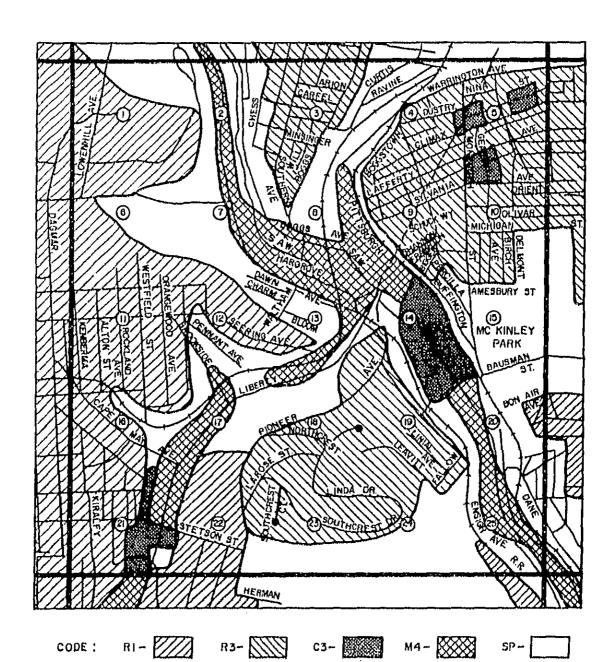


Figure 4-2. Detailed BSSV #062B

NO.	LOCATION	DORO	ZONE	MISC.	50URCES	DATE	TIME		11.13	
Q61801	COMENHAL	100	- 2.42				I	_110_	150	1_13
062802	COMENHIAL	188	RIOP	_Q	0/0804	111572	1442	66	58	23
062803	SAW MILL RUN	1280	muse	 	0/	111623	0203	7r	70	
SZIŐŸ		180	R2Sc	├─ ─	121	111523	1405	72	52	75
162105	INDUSTRY		Rase	ļ	0/04	1115.73	134R	44	60_	12.2
\$280¢	_CROXINY	108	1253	 	2111	44523	13,40	£4	14	147
62807	<u> </u>	188	SCR)	ļ	0/03,	11/523	44.30_	.68	6Q	12.2
TO TO	CRANA Aggas		sene		0/04	<i>!!!52</i> 3_	1.412	71	52_	145
6280		<u> </u>	SCR3B4	 	0/03	14,523	1103	22	52	
£28/0	SYLYANIA	188	£3553	ļ	QL	11/673	0753	63	60	38
228//	SERRING / ROSKIAND	/86			0104//		Z12/_		54_	24
22012		/88	RISP	21_	2/2823	11523	01//	40	<i>[2</i>	12
6200	_6400/0	100			09		2224_	4/	47_	24
2014	SAM MILL RUN	788	268/11/1		9(/39/		ozyo_	66	<i>6</i> 1	1.51
20/5	M. KINLEY PARK		3732		9/	111.523	125g_	22	32_	137
7777	SOME ONLY	/88	RISP		±	Inzaa-			· .	<u> </u>
7207	LIBERTY	788	MISPRI		6/03/4		OHEO	<i>3</i> 2	\$\$	54
42071	MORTH CREET	108	8.336			11/6/23	ON TA	21	3/	63
328/91	LINIAL	788	1833emy		eroto#		1/07	-Z.K	-17	3.5
23000	SAW MILL RUN	178	SPRIMA		OLLOB		44.	25-	<u> </u>	44.
2027	FRIRASRES	100	RIC3 mg			- 17.07.3. I	0923	25 -	91	42
37/72	STETSON	138	RIR33F		020304		760K	-35-1	47	14
20231	SOUTHCREST	100	R3Se		01 9/9*09	4//2/	1010	29-	11	32
32 271	SOUTHCREST	400	135F		9/94/	- 1//2-5	1223	-3/5	17	17
37025	SAW MILL RUN	788	MYSECT		9//3	1112 63	453	<u> </u>	32	#
- TARRELL	THE PERSON NAMED IN COLUMN	/40/	tmascurt				// 25	<i>AQ</i>	2Y	62
1			 			 }				
			 							
			 		······································					
		·	 				 -			

Figure 4-3. Field Data Sheet for BSSU #0628

Table 4-1
Municipal Computer Codes

Cod	e Municipality	Cod	e Municipality	Co	de Municipality
101	Aleppo	144	Fox Chapel	18:	7 Pitcairn
102	Aspinwall	145	Franklin Park	188	
103	Avalon	146	Frazer	189	Pleasant Hills
104	Baldwin Boro	147	Glassport	190	
105	Baldwin Twp.	148	Glenfield	191	
106	Bell Acres	149	Greentree	192	
107	Bellevue	150	Hampton	193	
108	Ben Avon	151	Harmar	194	
109	Ben Avon Hts.	152	Harrison	199	
110	Bethel Park	153	Haysv111e	196	
111	Blawnox	154	Heidelberg	197	
112	Brackenridge	155	Homestead	198	
113	Braddock	156	Indiana	199	
114	Braddock Hills	157	Ingram	200	
115	Bradford Woods	158	Jefferson	201	
116	Brentwood	159	Kennedy	202	
117	Bridgeville	160	K11buck	203	
118	Carnegle	161	Lect	204	S. Fayette
119	Castle Shannon	162	Leetsdale	205	
120	Chalfant	163	L1berty	206	S. Versailles
121	Cheswick .	164	Lincoln	207	Springdale Boro
122	Church111	165	Marshall	208	Springdale Twp.
123	Clairton	166	McCand Tess	209	Stowe
124	Collier	167	McDonald	210	Swissyale
125	Coraopolis	168	McKeesport	211	Tarentum
126	Crafton	169	McKees Rocks	212	Thornburg
127 128	Crescent	170	Millvale	213	Trafford
129	Dormont	171	Monroeville	214	Turtle Creek
130	Dravosburg	172	Moon	215	Upper St. Clair
131	Duquesne	173	Mt. Lebanon	216	Verona
132	East Deer	174	Mt. Oliver	217	Versa111es
133	East McKeesport	175	Munha]]	218	Wa11
134	East Pittsburgh Edgewood	176	Nev111e	219	West Deer
135	Edgeworth	177	N. Braddock	220	West Elizabeth
136	Elizabeth Boro	178	N. Fayette	221	West Homestead
137		179	N. Versailles	222	West Mifflin
138	Elizabeth Twp. Emsworth	180	Oakdale	223	West View
139	Etna	181	Oakmont	224	Whitaker .
140	Fann	182	O'Hara	225	Whitehall
141	Findlay	183	Ohio	226	White Oak
142	Forest H111s	184 185	Osborne	227	Wilkins
143	Forward	186	Penn Hills	228	Wilkinsburg
1-120	t AT LINI H	100	Pine	229	Wilmerding

The symbols in the ZONE column are taken from Table 3-2. The first symbol represents the zone in which the measurement was taken; the rest are other zones located within the sampling element. MISC, whose symbols are defined in Table 4-2, lists the noise-sensitive areas in the vicinity of the measurement site. The SOURCE column contains major contributors to the noise levels for that measurement site. This was a subjective analysis, since the sources were determined by the staff taking the measurements. As many as four different sources could be placed in this column with the most important contributor listed first. These codes are defined in Table 4-3.

The DATE and TIME columns are self-explanatory, while the RESULTS include the L_{10} , L_{50} , and L_{90} A-weighted sound levels obtained from the 10-minute noise sample.

In Figure 4-3, which contains data from BSSU #0628, the measurement site 01 was located in Lowenhill Avenue in the City of Pittsburgh (BORO 188). The site was located in a low-density area bordered by undeveloped land (ZONE RISP) in the vicinity of a school (MISC 01). The major source of noise was traffic, although construction and aircraft contributed to the levels (SOURCE 010204). The measurement was taken November 15, 1973 (DATE 111573), at 2:47 p.m. (TIME 1447). The 10-minute sample had 66, 58, and 55 dB as its respective L_{10} , L_{50} , and L_{90} A-weighted sound levels.

After similar data sheets were completed for each of the 659 BSSU's in Allegheny County, a computer was programmed to store this information. A sample of the noise file is contained in Appendix R. Then, using a second program to sort this information, the data could be analyzed according to a number of different parameters. This analysis is detailed in the following sections.

Table 4-2
Noise-Sensitive Area Computer Cude

Symbol .	Area
01	Schools
02	Hospitals
03	Churches
04	Nursing Homes

Table 4-3
Noise Source Computer Code

		110136 501	itee compacti code		
01	Traffic	. 13	Industrial	25	Shoveling Snow
02	Construction	14	Trees	26	Transformer
0.3	Dogs	15	Garbage Col.	27	Boat Whistle
04	Planes	16	Rain	28	Idling Truck
05	Trains	17	Church Bells		Boat
05	Lawn Equipment	18	Industrial Sirens	30	Idling Trains
07	Leaf Comp.	19	Radios & TV	31	Airport Operations
60	Emer. Sirens	20	Street Cars	32	Farm Equipment
09	Birds	21	Raking Leaves	33	Gunshots
10	Crickets	22	Running Water	34	Thunder
11	People	23	Power Saws	35	Minibikes
12	Air Cond.	24	Pumps (oll, gas, etc.)		

THE PARTY OF THE THEORY OF THE PROPERTY OF THE

SECTION 5. RESULTS

The Allegheny County community noise survey had two main objectives which somewhat established guidelines for the analysis procedure. The first was the evaluation of the existing acoustic environment; the second the development of the technical foundation for community noise legislation.*

As a result of the specific methodology used, a massive amount of data was obtained—over 700 sites were surveyed with such information as A-weighted sound level, major sources, location, time, and date recorded for each. In order to put this information into a workable format, the noise survey data were sorted and analyzed according to the specific parameters listed below:

- BSSU
- Hour
- Source
- Zoning/Land Use
- Noise Sensitive Area
- Municipality

Since prototypes of this specific program and objectives were not available, the outcome could not be anticipated. Consequently, not all the results could be used for this particular piece of legislation. Some parameters produced information that could be directly incorporated into the proposed regulation, while others produced only interesting numbers. Nonetheless, the results of each analysis are discussed in the following section along with their impact on the proposed regulations.

5.1 Results of BSSU Analysis

Figure 5-1 shows the computer analysis for BSSU #0628 whose data sheet was discussed in the previous section. Measurements were taken at 24 sites within the BSSU, and for each site, L_{10} , L_{50} , and L_{90} A-weighted sound levels were obtained. Cumulative distributions were then formed for the 24 L_{90} values and the following statistical calculations were made:

NUMBER. The number of records processed.

 Selected sections of the proposed Allegheny County community noise legislation are presented in Appendix A.

DECT AVAIL ADIC ANNU

Figure 5-1. Computer Analysis for BSSU #0628

SUM The total value of all records

SUM *
$$\Sigma x_1 = x_1 + x_2 + x_3 ... + x_n$$
 (9)

MEAN The value of SUM divided by the number of records

MEAN = SUM/NUMBER =
$$\Sigma x_{1/n} = u$$
 (10)

SUM 2 The total value of each level result squared

SUM 2 =
$$Ex_1^2 = x_1^2 + x_2^2 + x_3^2 + ... + x_n^2$$
 (11)

51 The value of SUM 2 minus the MEAN squared times the number of records.

S1 = SUM 2 -
$$\mu^2 n$$
 = $Ex_1^2 - \frac{(Ex_1)^2}{n}$ (12)

52 The value of S1 divided by the number of records less one.

$$S2 = S1/(n-1) = \left[\sum_{n=1}^{\infty} \frac{(x_1)^2}{n}\right]/n-1$$
 (13)

S The square root of the value of S2

$$S = \sqrt{S2} = \sqrt{S17(n-1)}$$
 (14)

$$ERR - 99^* = (S \times t_{99})/\sqrt{n-1}$$
 (15)

t₉₉ * value exceeded in both directions with a probability of .01 in a student t distribution with n degrees of freedom

ERR - 95* =
$$(S \times t_{95})/\sqrt{n-1}$$
 (16)

t₉₅ * value exceeded in both directions with a probability of .05 in a student t distribution with n degrees of freedom

ERR -
$$90^* = (S \times t_{90}) / \sqrt{n-1}$$
 (17)

 t_{90} = value exceeded in both directions with a probability of .10 in a student t distribution with n degrees of freedom

After these calculations were repeated for the L_{50} and L_{90} parameters, the Leq level was obtained using equations 18 and 19 which were developed from equations 3 through 6.

$$s = (\Gamma_{10} - \Gamma_{50})/1.28$$
 (18)

$$L_{eq}^{m} \Gamma_{50} + .115 s$$
 (19)

^{*} From these error values, confidence intervals could be established. In this particular BSSU, the mean Lgg A-weighted sound level with a 90 percent confidence interval was 54.9 ± 2.2 dB. Thus, if the measurement were repeated 100 times, the mean Lgg A-weighted sound level would fall between 57.1 and 52.7 dB 90 times.

where: $\overline{L_{10}}$ = Mean or average L_{10} A-weighted sound level in BBSU $\overline{L_{10}}$ = Mean or average L_{10} A-weighted sound level in BBSU

The entire procedure was repeated for each of the 659 BSSU's in Allegheny County. The results of the computation are shown in Figure 5-2. As this figure presented a current evaluation of the noise environment, it was used to formulate the anti-degradation section of the proposed legislation.* This section establishes "ambient" noise standards using the same reasoning behind the development of the ambient air standards.

While the range of A-weighted sound levels for measurement locations within each individual BSSU was small, the range of average levels from one BSSU to another was large, as indicated by the numbers in both Figure 5-2 and Table 5-1.

Table 5-1
Range of A-weighted Sound Levels of BSSU's

	<u>_</u>	·90 *		L ₅₀ *	ī	10 *
Location	hNX.		MAX	MIN	MAX	MIN
Allegheny County	67.3	31.3	73.5			40.6
City of Pittsburgh	61.5	41.0	67.0	47.8	75.0	55.1

^{*} I represents average A-weighted sound level in the BSSU-

5.2 Hour-by-Hour Analysis

To obtain a temporal analysis, the survey data were analyzed according to the hour in which the measurement was made. First, all measurements taken between the hours of 0800 and 0900 were sorted. Then, the individual \mathbf{L}_{10} , \mathbf{L}_{50} , and \mathbf{L}_{90} parameters were put into histograms from which statistical averages were obtained using equations 8 through 19. Finally, the procedure was repeated for measurements taken from 0900 to 1000, 1000 to 1100, 1100 to 1200 hours, etc. The resulting computer printout for a typical hourly grouping (0900 to 1000 hours) is shown in Figure 5-3.

The hourly results for Allegheny County are 11sted in Table 5-2 and plotted in Figure 5-4. The analysis shows that between 0900 and 1700 hours, the hourly

See Appendix A for exact wording of this legislation.

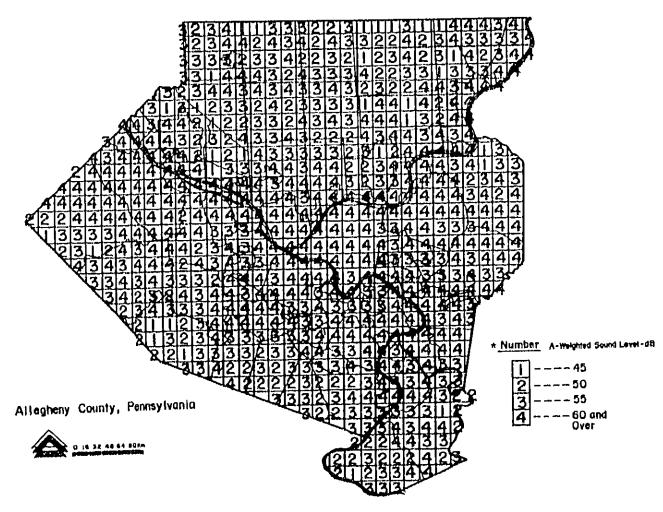


Figure 5-2. Anti-Degradation Map of Allegheny County
*All BSSU's with #1 had computed Leq A-Weighted Sound Levels between 0 and 45 dB. Those with #2 had Leq A-Weighted Sound Levels between 45 dB and 50 dB, #3 between 50 dB and 55 dB and #4, over 55 dB. The numbers were raised to the upper levels for legislative purposes.

		LEVEL -	. 1	LEVE	L - 10	LEVEL	- 50	LEVEL	~ 9 0
	MIDPOINT	нÖ. C	TŽIC	NO.	DIST	NO.	DIST	NO,	DIST
	MIDPOINT 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77	0 0 0 0 2 5 11 23 32 30 66 70 110 1 152 1 94 111 1	.00 .00 .00 .02 .55 2.4 3.4 2.4 3.7 7.4 6.1 9.9 11.7 65.9	NO. 0 0 0 6 18 40 53 84 100 106 120 103 102 62 52 44 27	0.00 .00 .00 .00 .00 .00 1.9 4.2 5.6 9.0 10.6 11.2 12.7 10.0 6.6 5.5 4.7 2.7	MO. 0 2 8 30 46 68 122 122 138 113 85 73 43 40 27 17 7	15T .0 .2 .8 3.2 4.9 7.2 12.9 12.9 12.9 14.6 11.9 9.0 7.7 4.5 2 2.9	NO. 16 22 70 99 84 149 164 111 78 52 48 20 15 14 3	1.7 2.3 7.4 10.5 8.9 15.3 11.7 8.5 5.5 5.1 1.6 1.5 1.0
رب دي	8) 86	27	2.9	8	.8	ò	.0	0	.0
on.	89	7	2.4 .7	0 0	.0	0 0	.0 .0	Ω 0	.0 0.
	92 95	2 0	.2 .0	0	.0 .0	0 0	.0 .0	0	.0
	98	ŏ	ö	ŏ	.ŏ	ő	.0	ű	.0 .0
	NUMBER	946.0	כ	9	946.0	946	5.0	910	
	SUM	62,640.0)	55,9	86.0	48,192	2.0	43,986	6.0
	MEAN	66.2	?		59.2	50).9	46	5,5
	SUM2	4,236,450.0)	3,400,3	144.0	2,530,634	1.0	2,111,056	5.0
	S1	88,702.0)	86.9	190.7	75,592	2.9	65,846	i,5
	52	93.9)		92.1	80	0.0	69	.7
	S	9.7	•		9,6	e	1.9		.3
	ERR-99	0.8)		8,0	a).7	a	.6
	ERR-95	0.6	i		0.6	O	1.5	C	.5
	err-90	0.5	i		0.5	Œ	.4	0	.4
	COMPUTED L EQUIYA	LENT 55.734							

Figure 5-3. Computer Analysis for Measurements Taken From 0900 to 1000 Hours

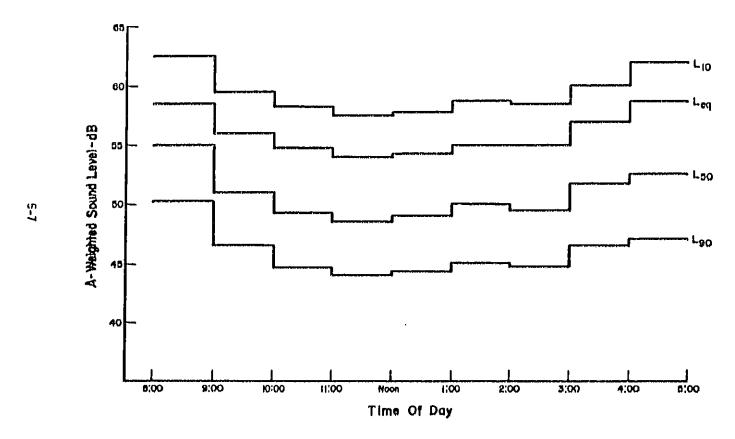


Figure 5-4. Hour-by-Hour County-Wide A-Weighted Sound Levels

variation was small enough to validate the earlier assumption that only a single measurement during this time period would be needed to determine the daytime noise climate.

Table 5-2.
Hourly Measurement Results

Time	No. of Measurements	<u>T</u> 10*	T ₅₀ *	T ₉₀ *	ī,*
0800 - 0900 0901 - 1000	190	62.7	55.4	50.8	59.2
0901 - 1000 1001 - 1100	946 1504	59.2 58.1	50.9 49.3	46.5 44.6	55.7 54.8
1101 - 1200	1288	57.4	48.6	43.9	54.0
1201 - 1300	1006	57.8	49.2	44.3	54.4
1301 - 1400 1401 - 1500	1093 1076	58.6 58.4	49.9 49.5	45.2 44.8	55.2 55.1
1501 - 1600	576	60.3	51.7	46.7	56.9
1601 - 1700	59	62.0	52.5	47.0	58.8

The represents average A-weighted sound level in specific time period.

It is conceded that nighttime and rush-hour measurements should have been taken to obtain more detailed results. However, since the purpose of this survey was to obtain a baseline for community noise legislation, these 0900 to 1700 hours readings would be sufficient. Standards based on the extremely high levels generated during the rush hours would tend to be too high, while the 10-decibel nighttime reduction specified in reference 9 eliminated the need for nighttime data.*

While the hourly parameter analysis established certain validity to the survey methodology, it produced no information that could be incorporated into the proposed legislation.

5.3 Source-by-Source Analysis

To analyze the major sources of noise, the following procedure was used. First, all measurements with traffic as their primary noise source was sorted. Next, histograms were made of the L-levels for these 5166 data points and the average L_{10} , L_{50} , and L_{90} A-weighted sound levels were obtained along with an L_{eq} . The computer analysis for this traffic source is shown in Figure 5-5. Finally, the procedure was repeated for the other significant sources. The results are summarized in Table 5-3.

* It should be noted that the 190 measurements taken during the 0800 to 0900 morning rush hour were used to establish the noise baseline for Allegheny County. However, since this number is a small percentage of the more than 7700 measurements taken, the distortion will be minimal.

Figure 5-5. Computer Analysis of Measurements With Traffic [01] as the Major Noise Source

BEST AVAILABLE MOV

Table 5-3
Noise Source Analysis*

Code	Source	No. of Sites	L _{eq}	Loudness Rank	Numerical Rank
01 ·	Traffic	5166	57.3	5	1
02	Construction	244	54.3	7	4
03	Dogs	190	48.3	13	6
04	Aircraft	946	51.6	10	2
05	Railroad Operations	62	59.9	2	11
06, 07	Lawn Equipment	156	50.8	12	7
08	Emergency Strens	8	52.4	8	17
09	B1 rds	262	42.7	17	3
10	Crickets	42	42.2	18	13
11, 19	People	123	51.1	11	8
12	Fans, Air Conditioners	29	54.6	6	14
13, 18, 24, 26	Industrial Operations	216	58.7	4	5
14	Rustling of Leaves	93	47.2	16	9
15	Garbage Collection	8	59.2	3	17
22	Running Water, Rivers	66	48.2	14	10
23	Power Saws	21	52.3	9	16
31	Airport Operations	ői	62.8	ĺ	12
32	Farm Equipment	27	47.5	15	15

* In a separate analysis, the noise sources at sites within the City of Pittsburgh were ranked numerically. Traffic was the major source at 74.3 percent of the sites and the secondary source at an additional 15.6 percent. Other significant sources were people (major source at 10.4 percent and secondary source at 12.0 percent), aircraft (0.4 percent and 21.5 percent), dogs (03.0 percent and 14.3 percent), trains (01.2 percent and 14.6 percent), construction (01.9 percent and 04.1 percent), and industrial operations (02.8 percent and 14.1 percent). Primary sources were listed first in the source section of each data sheet (Figure 4-3). Secondary sources were listed second. Additional sources were not included in this analysis.

While this procedure may appear to be a rather simple method to analyze the data, Table 5-3 does reveal those sources which both need to be reduced and can be controlled by local regulations. Traffic was the major source in the greatest number of sites, while airport operations produced the highest $L_{\rm eq}$ value. Both of these sources can be regulated as well as most of the other major sources listed. However, this table could also be somewhat misleading, as shown by the low $L_{\rm eq}$ values of dogs. Their high-pitched barking was a common nuisance in Allegheny County.

Although the source evaluations produced no direct contribution to the regulations, it did prioritize problem areas as well as justiffy controls for such sources as traffic, construction, industrial operations, etc.

5.4 Zoning/Land Use Analysis

To define the existing A-weighted sound levels for the various land uses, the survey data were analyzed according to the zoning criteria in Table 3-1. To begin, all data obtained taken in an R1 (low-density residential) land use were sorted. Then the different statistical parameters were obtained using equations 8 through 19. Finally, the procedure was repeated for the other zoning categories with the results summarized in Table 5-4.

The table also classifies these results according to adjacent land uses. For example, the measurements made in low-density residential (R1) areas can be subdivided into such categories as RIC3, RIM4, RISP, etc. The RIC3 classification represents measurements in a low-density residential area with an adjacent commercial land use in the same sampling element. Similarly, an RIM4 classification represents a measurement taken in low-density residential areas with an adjacent industrial land use in the same sampling element. Thus, the 4883 measurements obtained in R1 land use can be divided as follows: 2149 RIR1, 277 RIR3, 211 RIR5, etc. Similar analyses were made for the other zoning categories.

As indicated in Table 5-4, the adjacent land use did have a significant influence on the A-weighted sound levels. As an example, the Leq for the RIRI sites averaged 52.0 dB compared to 57.3 dB for the RIR3 sites. Similarly, the Leq for the MIM4 sites averaged 65.8 dB compared to 59.7 dB for the MIRI. However, since regulations based on the categories listed would be far too complex to understand and enforce, Table 5-4 was consolidated into the combinations below with the results summarized in Table 5-5.

- Residential bordered by Residential RR
- Residential bordered by Commerical R
- Residential bordered by Industrial RM
- Commerical bordered by Residential CR
- Commerical bordered by Commercial CC
- Commercial bordered by Industrial CM
- Industrial bordered by Residential MR
- Industrial bordered by Commercial MC
- Industrial bordered by Industrial MM

CONTROL OF THE CONTRO

BEST AVAILABLE COPY

Table 5-4
Zone-by-Zone Analysis

							-						
Zone	Sub	No. of Sicas	ī ₁₀	T ₅₀	ĩ,	Leg	Zone	Sub	No. of Sites	T ₁₀	ī. ₅₀	ī,90	Î _{eq}
	RIRI	2149	56.2	40.3	42.0	52.0		0303	87	66.2	57.6	53.7	62.9
	RIR3	277	60.8	52.0	40.2	57.3		C3C5	<u> </u>	77.0	69.0	64.0	73.5
	RIRS	žii	56.1	45.2	40.0	53.5		CORT	227	67.2	50.6	51.8	63.7
	RIST	1519	56.0	46.7	41.9	52.8	C3	C3R3	71	67.0	59.3	53.8	63.5 64.0
	RICI	471	60.8	52.5	47.4	57.3		C3M1 C3M4	21 23	67.5 68.5	59.3 61.9	53.3 55.9	65.0
R1	RIC5	4	65.6	56.0	52.0 45.4	62.7 56.1		C3MB	23	76.5	67.5	52.0	73.1
	RIMI RIMI	110 124	59.4 59.4	50.B 52.8	49.0	55.6	TOTAL	CJ CJ	432	67.4	- 59.2	52.8	-63.3-
	RIM6	14	57.3	49.5	47.5	53.0	10,11.2			•			
	RIMO	Ä	54,5	47,5	45, Ŏ	50.9							
****		4883	57.0	48,5	43.4	53.7		C5C5	10	73.3	60.0	63.6	70.0
TOTAL	RΤ	1003	37.0	40,0	73.7	33.7		C5C3	ļ	72.0	65.0	62.0	68.5 64.1
							C5	C5R1 C5R3) 4	67.7 64.8	61.0 58.3	58.0 54.3	61.3
	R3R3	94	60.5	53.0	40.9	56.9		C5213	ï	60.0	54.0	51.0	56.6
	RORI	158	59.4	51,4	47.4	55.9		C5H4	í	71,0	65.0	0.00	67.5
	RJSP	04	60.0	52.4	48.7	56.5	TOTAL	-05	20	70.2	63.9	60.2	65.7
0.0	HOCO	139	63.4	55.6 54.0	50.9 49.6	59.9 60.2							
R3	R3C5 R3:11	5 19	63.4 62.5	55.6	52.0	59.0			***			46.0	
	ROIH	55	63.4	57.4	53.3	60.0		SPR1	294 51	59.4 61.0	51.0 54.9	46.2 50.3	56.0 58.2
	R3M6	2	56.0	52.5	50.5	53.4		SPR3 SPR5	32	54.1	44.8	40,1	50.9
TOTAL	AJ	556	61.2	53.6	-49-5-	-17.7	92	SPHI	19	65.1	56.6	51.1	61.7
								5PM4	41	65.3	50,0	54.1	62.3
		• • • •		40.4	A41 D	40.1		50	5	53,6	44.8	41.2	50.2
	R5R5	186 100	52.2 54.6	42.4 43.0	38.2 38.7	49.1 52.0	TOTAL	-\$h	850	50.4	19.8	45.1	55.0
	A5R1 R5A3	100	66.0	45.0	34.0	64.0							
R5	RSSP	106	50.2	41.5	37.5	46.8				60 B	F1 0	** 0	es a
11.4	R5C3	6	61.3	40.7	42.5	59.8		HIHI	21	63.0	51.0 62.1	51.9	61.2 65.8
	กรทา	3	57.3	45.3	41.3	55.4		HIMS MIRI	18 56	69.4 63.2	54.9	57.2 49.3	69.7
	R5/H	5	66.6	56.4	53.2	60.7		MIR3	13	69.7	63.2	58.1	66.3
	R5H6	!	59,0	48,6	14.0	19.7	HI	MIR5	Ĭ	51.0	44.0	41.0	47.4
TOTAL	R5	416	52.2	42.8	30.4	49.0		HISP.	27	65,5	58.0	52.3	61.9
								HIC3	13	66,2	58,2	52.9	62.7
	MAMA	93	70.3	63.)	57.8	66.7	TOTAL	H	749	64.7	57:0	51.11	61.2
	H4H1	13	60.5	61,8	54.0	65.0							
	M4M6	1	65.0	59.0	56.0	61.5		M6M6	7	58.2	50.4	49.0	54.6
	MANO	1	67.0	73.0	61.0	86.7		MSHA	i	78.0	71.0	63.0	74.4
H4	MRI	89	66.3	58.6	53.7	62.7	HG	M6R1	Ġ	63.5	57.7	54.3	60.1
	M483 M45P	32	69.1 66.0	62.5 58.6	58.3 54.1	65.6 62.4		MORS	2	46.0	41.5	30.5	42.9
	HACO	66 38	70.6	62.7	57 2	67.1		Most	13	60.3	50.6	44.2	57.9
	MIC5	2	73.0	67,0	63.0	69.5	TOTAL	116	29	69.3	-52:1	17:3	56.0
TOTAL	HIGS HI	335	<u>- 68.3-</u>	60.9	56.2	64.7							
							Ha	H8H8	11	71.0	64.8	59.3	6A,2
							****	MERI	2	54.5	44.5	41.0	51,5
							TOTAL	Ha	13	69.2	-61.7-	56.5	65.6

Note: T is average A-weighted sound level for sites within a particular zone

Table 5-5 Combination Zone-by-Zone Analysis

Category		Sub	llo. of Sites	$\overline{\iota}_{10}$	ī.50	ī ₉₀	Teq
		0101					
		R1R1 R1R3	2149 277	56.0 60.8	40.3 52.0	42.0 40.2	
		RIRS	211	56.1	45.2	40.0	57.3 53.5
Passad 44-1 D		RISP	าร้าย	56.0	46.7	41.9	52.8
Residential Son		RIRI	94	60.5	53.0	48.9	56.9
By Residentia	1	RORI	158	59.4	51.4	47.4	55.9
(AR)		RISP	84	60.0	52.4	48.7	56.5
		RSR5	106	52.2	42.4	38.2	52.0
		A5R1	1 <i>0</i> 0	54.6	43.0	30.7	52.0
		RSSP	106	50.1		17.5	46,0
	TOTAL	ŔŔ	4092	50.1 56.2	-41 +3-	42.7	52.6
_							
Residential Dor	dered	R1C3	471	60.8	52.5	47.4	57.3
By Commercial		R3C3	139	61,4	55.6	50.9	59.1
(RC)	TOTAL	AC	610	61.4	53.2	50.9 48.2	57.9
Danidanata Son	4	RIMI	110	59.4	50.8	45.4	56.1
Residential Boro	erea.	R1M4	124	59.4	52.8	49.0	55.6
By Industrial		ROM)	19	62.5	55.6	52.0	59.5
(RM)		R3M4 R1M6	55	65, 3	57.4	53.3	60.0
	TOTAL	RH	322	57.3	-49.5 52.5	47.5	53,8
	IDING	DCI	322	60.1	52.9	48.6	56.8
Comparcial Borde	red	CJRI	277	62.0	F0 4		
By Residential		C3R3		67.2	58.6	51.8	63.7
(CR)	TOTAL	Ch		67:0	-29.3-	52.3	63.5
(4.1)	141.14	•11	k 70	67,1	79.0	54.3	37.6
Commercial Borde	red	C3C3	87	66.2	57.8	63.7	63.0
By Commercial		C5C5	10	71 2	68,0	53.7	62.9 70.0
(CC)	TOTAL	-22		-73.3 66.9	-5 <u>6.5</u> -	63.6 54.7	63.4
Commercial Border	red	-C3M1	21	67.5	59.3	53.3	64.0
By Industrial		C3H4	ži	68 5	61.9	22.2	
(CM)	TOTAL	CH		0.65	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	55.9	65.0
•			••		00.,	31.,	07.7
		MIRI	56	63.2	54.9	49.3	59.7
Industrial Borde	red	MIRO	13	69,7	63.2	58.1	66.3
By Residential		H481	89	66.3	58.6	53.7	62.7
(MR)		MARS	32	69.1	62.5	58.3	65.6
		M6R1	6	63,5	57.7	54.3	60, 1
	TOTAL	MR	196	66.1	58.4	53.5	62.6
fortuna = 4 - 9 . On and a con-							
lawustrial Border By Commercial		MIC3	13		5A.2	52.9	62.7
(MC)	TOTAL	HC3	38	70,6	62.7	57,2 56.1	67.1
(130-)	IVIAL	TPL.	51	69.5	61.5	20.1	66.0
		MIMI	21	63.0	4.3 A	•••	 .
industrial Bordere		nini MTM	21 18	63.8	53.0		61.2
By Industrial		MANA	23	69,4			65.8
(191)		MHI	13		63.1		66.7
11777		MENS	រែ	71 R	61,B !	58.0 50.3	65.0
	TOTAL	`#F	156	71.8 69.3	64,8 61.6	59 3 57 1	68.2 65.7
			150	47.3	V1.U	<i>31</i> . 1	u3,/

NOTE: $\widehat{\mathbf{L}}$ is average A-weighted sound level for sites within a particular zone.

While a sizeable spread still existed within the individual combinations, the number of entries was reduced to a workable amount. Table 5-5 is refined in Table 5-6, which was used in drawing up the proposed noise legislation in Appendix A.*

Table 5-6
Existing A-weighted Sound Levels Across Zone Property Lines

Emitting Land Use	Rece	eiving Land Use	•
	Residential	Commercial	Industrial
Residential	53	58	57
Commercial	64	63	64
Industrial	63	- 66	66

As a point of interest, Figure 5-6 compares the cumulative distribution of A-weighted sound levels taken at sites located in residential areas (only R1 or R3 land uses were in the sampling element) to those sites located in residential areas bordered by commercial or industrial activities. While there is a significant increase in the levels, the increase is not as great as was anticipated.

There are a number of other parameters that could be used in combination with the zoning to obtain more information. Figure 5-7 results from an hourly analysis of the L_{90} A-weighted sound levels of sites taken in separate M4, M1, R5, R3, and R1 land uses. The tabular information in this figure indicates the number of measurements taken in each zone for each hour. While these data make no direct contribution to the proposed regulations, they do, for the most part, verify the earilier assumptions of a constant noise level from 0800 to 1600 hours.

As an additional test to determine the direct effects of industrial operations on residential areas, the following criteria were used to sort and analyze the data.

- Sites located in low-density residential areas (R1) bordered by heavy industrial areas (M4)
- Industrial operations as the major noise source

The resulting computer printout is shown in Figure 5-8. Although it was anticipated that such information would be used in defining problem areas and setting more exacting standards, only a limited number of sites met the specific criteria.

See Appendix A for exact working of proposed county legislation.

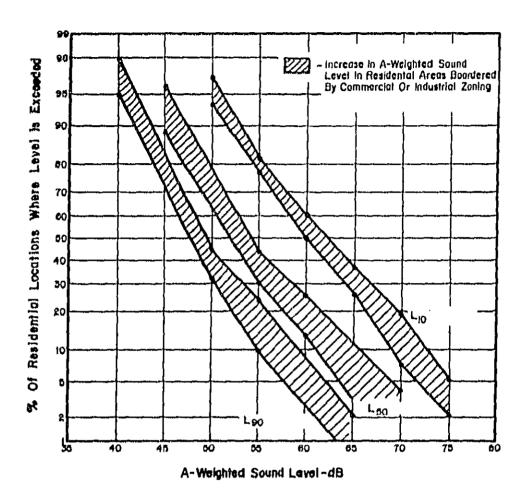


Figure 5-6. Increase in A-Weighted Sound Levels Caused by Commercial or Industrial Activity

The state of the s

Land					Time	_			
Use	8-9	9-10	10-11	11-12	12-1	1-2	2-3	3-4	4-5
m4	15	53	50	53	40	52	53	17	
m I		25	25	14	13	23	17	25	
R5		25	83	79	60	79	59	27	
R3	24	78	101	90	60	89	67	43	
RI	113	563	946	827	660	671	719	352	32



Figure 5-7. Hour-by-Hour \mathbf{L}_{90} A-Weighted Sound Levels According to Zone

	MIDPOINT	LEVEL - 1 NO. DIST	LEVEL - 10 NO. DIST	LEVEL - 50 NO. DIST	LEVEL - 90 NO. DIST
5-17	26 29 32 35 38 41 44 47 50 53 62 65 62 65 68 71 74 77 80 83 86 89 92 98	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	NUMBER	17.0	17.0	17.0	17.0
	SUM	1,140.0	1,022.0	940.0	889.0
	MCAN Sum2	67.1	60.1	55.3	52.3
	SI	77,244.0	61,994.0	52,348.0	46,875.0
	S2	797.0	553,8	371.5	385.5
	S	49.8	34.6	23.2	24.1
	ERR-99	7.1	5.9	4.8	4.9
		5.1	4.3	3,5	3.5
	ERR-95	3.7	3.1	2.5	2.5
	ERR-90	3.0	2.5	2.0	2.1
ι	COMPUTED L EQUIVALI	ENT 56.917			

Figure 5-8. Computer Analysis by Source and Zone Sorting

5.5 Noise-Sensitive Area Analysis

In order to establish appropriate standards for various noise-sensitive areas such as schools and hospitals, part of the survey was set aside to determine their acoustic environments. To obtain these results, the data were sorted and analyzed according to the specific type (if any) of noise-sensitive area in the vicinity of the measurement site. The results, summarized in Table 5-7, indicate that the four areas had approximately the same A-weighted sound levels.

Table 5-7 Noise-Sensitive Area Analysis

Code	Noise-Sensitive Area	flo. of Sites	T*10	T*50	J _* 90	E*cq
01, 10	Schoo1s	566	60.7	52.7	48. D	57.2
01. 1M	Hospitals	68	62.3	56.3	52.6	58.8
03	Churches	397	61.6	53.4	48.6	58.1
04	Nursing Homes	20	60.9	51.6	56.1	57.9

^{*} Frepresents average A-weighted sound levels in vicinity of paricular noise-sensitive areas.

A cumulative distribution was made for the 566 $\rm L_{10}$ values taken at sites located near schools. Similar distributions were made for the $\rm L_{10}$ values of the other four categories and the composite results plotted in Figure 5-9. This procedure was then repeated for the $\rm L_{50}$ and $\rm L_{90}$ levels. The figure somewhat contradicts Table 5-7, since the composition distributions have a significant range. Also shown in this figure is the distribution of L parameters for measurements taken in residential areas. Note that the residential distribution is slightly lower or quieter than that of the noise-sensitive areas. This result indicates that any criteria established for residential areas would be more than adequate for those noise-sensitive areas. To set special low criteria for the schools and hospitals would be inconsistent with the existing acoustic environment.

5.6 Municipality-by-Municipality Analysis

To obtain a municipal noise analysis, the survey data were analyzed according to the township or borough where the individual measurement was taken. For example, all sites located in Aleppo (Code 101) were listed and the statistical parameters were obtained using equations 8 through 19. The procedure was then repeated for the

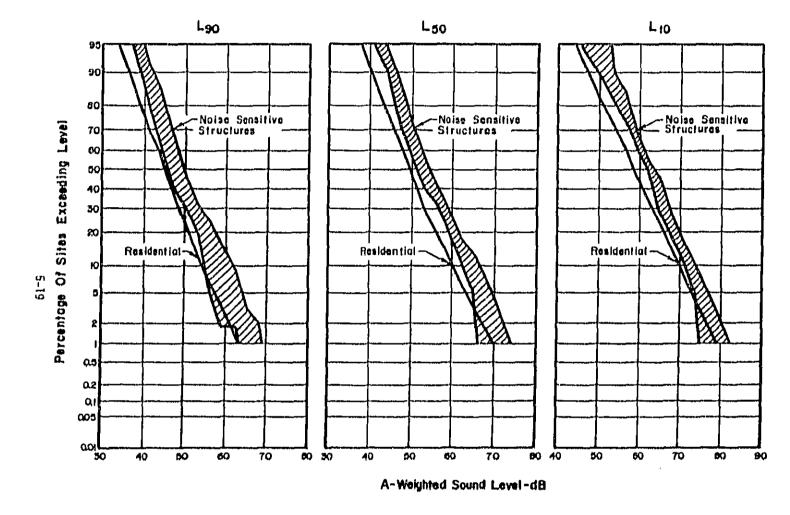


Figure 5-9. Cumulative Distribution Plots for Noise-Sensitive Areas

other 128 municipalities with the $L_{\rm eq}$ results summarized in Figure 5-10. Additionally, the survey data in each township or borough were subdivided into the different zoning classifications and analyzed. These results are summarized in Table 5-8. Originally, this information was studied to determine possible standards, but it eventually was used for publicity for the program. There was no justification for setting one level in Township A and a separate level in Township B, since the discrepancy of levels within a given township was too great. Also, to set levels according to zone and township would have been far too cumbersome to enforce.

5.6.1 Analysis for the City of Pittsburgh

HEAT WAY 1838

Figure 5-11 contains the individual BSSU's comprising the City of Pittsburgh.* The L₁₀, L₅₀, and L₉₀ A-weighted sound levels for each BSSU within the city are summarized in Table 5-9. As mentioned in Section 5.1, there was a large range of values for the BSSU's within the city limits. While this particular information was not used in preparing the noise ordinance, it was used as a prelude to the public hearings and workshops.

As a final point of interest, the computer results for the 979 sites.comprising the City of Pittsburgh are listed in Figure 5-12. They are somewhat higher than the results of the 7741 sites comprising Allegheny County which are listed in Figure 5-13.

^{*} This figure, prepared especially for publicity purposes, uses a different numbering system than the one in Figure 3-2. It was felt that the simple system used would be more easily understood by the general public.

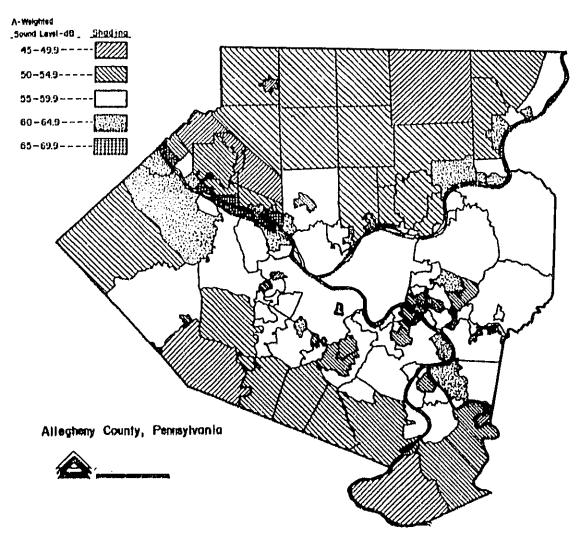


Figure 5-10. Municipality-by-Municipality Noise Analysis

BEST AVAILABLE COPY

Table 5-8 Municipal Noise Analysis

COOE	MUNICIPALITY	faite	es Lig	150 L90 Leq	R	L.I.)	ç	L <u>. 65</u>	n) n	4 , M5 , M9 66 Leq
					falte	2 Eq	///	1, C5 18 Leq	/AIL	er r ^{ed}
	АТерро	15		15.5 40.9 50.1	10	51.7			-	
02	Aspinesti	, a	59.9	14.5 51.0 56.5	. 6	65.6	1	54.8	1	57.2
	Avalen Baldwin Bore	15 01	/0.30	3.0 50.9 66.7 19.2 45.4 55.3	13 70	65.8 53.0	4	73:7	5	66.2
	Baldwin Twp.	14	56.7 4	8.5 44.1 53.2	12	50.0	i	65 B	า้	71.5
	Dell Acres	áí	51 9 4	2.5 30.1 40.7	j)	50.7 49.5	i	65.5 59.4	•	/1.5
	Ballerve	10	64.3 5	86,0 50.8 60.8	14	61.2	3	61.0		
	Den Avon	5	71.1 0	1.9 58.9 67.5	6	68.3			1	73.7
	Sen Avon Hts Sethol Park	135	64.0.4	9.0 54.5 60.4 6.3 41.6 50.5	าเริ่	60.4 90.8	2	49.4	5	43.2
	Blamox	1.5	50.8 5	4.4 51.2 55.0	1	55.0	i	50.6	້ຳ	61.0
	Brackenr 1498	ā	64.2 5	7.6 52.7 60.7	ő	57.3	ż	61.9	i	อี้เ.เ
	Braddock		53.0 5	6.3 51.3 57.4	3	50.4		-	3	60.1
	Braddock Hills	15	55.0 4	9,1 46.7 51.5	10	51.5				
	Bradford Hoods Brantwood	14 23	31.3 4 AA 1 A	1.9 38.4 48.4 0.7 46.4 54.5	14 18	40.4 55.0	3	59.2		
	Bridgeville	17	50.3 5	0.1 46.2 54.8	iš	54.8	í	51.A	1	49.6
	Carnegle	37	60.2 5	3,3 49,9 56.6	27	55.N	Í	60.5	· ž	66.0
	Castle Shannon	24	01.0 5	1.7 47.0 57.0	21	56.3	3	64.3		
	Cha]fant	2	55.5 4	0.0 46.5 5).9	2	51.9			_	
	Cheswick Churchtil	22	64.0.2	7,9 62,6 61.4 9,1 55,1 62.3	6 16	50.8	1	74.4	1	65.0
	Clafrton	žň	62.0 5	3,6 49.4 58.6	źĭ	66.5	3 /	60.0	i,	71.4
Z4 (Colliter	119	57.0 4	9.2 45.2 54.4	35	55.2	ż	61.4	10	60,5
	Cornopolia	21	62.2 5	1,4 50,3 50.7	10	50.7	1	72.0	2	70.1
	Crafton	20 30	39.5 5	0.3 46.6 56.2	27	54,0	1	56.6	ż	52,4 60,4
	Crescent Pormont	17	64-1-59	3.9 40,0 60.2 3.5 51.1 60,7	14	54.5 56.5	2	71.8	3	P, pa
	Drayosburg	12	67.0 5	9,1 53.3 64.4	6	41.3	ž	70.2	2	67 6
30 (Duquetne	18	67.0 6	9,4 54,0 53.5	11	59.6	•		- 74	67.6 74.7
21 /	est Peer	5]	64.2 5	2.1 40.2 62.4	18	61.0			1	70.5
32 (32 (last MeKeesport Last Pillsburgh	2	44 9 6	5.5 47.5 64.2 1.4 54.3 62.3	2	61.2				40.4
űi	Idgewood	12	60.1 52	1.7 48.0 56.5	76	57.0 58.3			1	69.6 60.4
	domorth	14	62.8 54	.6 49.9 59.3	12	50.2	1	77.5	•	00,4
36 ([] zabeth Boro	_4		9.0 45.6 51.8	. 4.	51.7	_		_	
27 !	Itrabeth Tup.	173	26.7 40	5.3 40.5 53.9	143	53.4	ě	67.1	.2	57.3
	imsworth Itna	12 14	64.7 21),3 56,6 61.3),1 54,5 62,1	4 2	57.1 57.5	1 2	67.0	1	72.4 74.5
	ind)	94	56.2 41	1.8 39,3 53.9	ī́≀	51.0	î	54.4 72.1	´s	56.6
11 /	Indlay	175	36,3 46	1.1 40.7 53.6	75	53.1	14	64.9	17	53.0
12 /	prest HIIIs	23	60,6 52	.2 47.6 57.2	12	57.6	ż	62.6		
	orward ox Chapel	142 90	33,1 44	.6 40,3 49,7 .6 41.3 50,8	29 0)	51.9 50,6			6	15.0
	ranklin Park	ากั	53.3 41	1 75.1 51.5	100	51.4	5	61.6		
	rester	63	52,0 39	.5 34.0 50.5	41	50.7	j	15.7		
7 9	lassport	10	59.7 54	1.2 51.9 56.5	14	53.6	2	67.9	2	62.9
	lenfield	n st		.0 55.9 65.0	4 19	61.0 50.3	4	40.7	- 1	53.4
	irøsnireb Ionnion	179	66.7 47	.5 51.5 59.2	137	52.2	เเ	69.7 72.5	Ž	66.4
	larmar	57	64,2 55	.7 42.2 53.4 .1 49.2 60.9	íč	67.5	Ġ	70.5	13	65.2
2 8	larrison	76	59.0 52	.7 40.2 56.2	59	54.0	2	66.9	5	64.9
	Aysville	,	69.7 56	.3 54.0 67.4	3	67.4				
	eldelbary kmesteed	3 16	20.3 20 40 9 63	.7 51.3 54.9 .5 50.3 56.6	3	54.9	4	40.4		40.4
	ndiana	137	54.3.45	,2 40.6 51.0	ว ัว	54.4 52.4	ı"	MO. 4	3	60.6 5.2
	ngrem	9	51.7 47	.0 44,8 40,5	9	48.5				
4 j	efferson	135	56.2 AD	.3 49.1 52.B	104	51.5	۵	10.2	24	57.0
	ennedy	67	60,9 61	.1 45.8 57.0	40	57.5	1	50.3	4	51.A
	Ilbuck eet	29 15	27.7 21	.0 47.0 54.2 ,3 42.5 53.4	11 15	53.4 53.4				
	ertidale	14	69.6 67	.5 57.3 66.0	13	54.5	1	64.0	7	62.6
ĴĹ	1berty	15	50,8 49	,3 44.9 55.6	12	54.3	·		ż	64.5
4 L	Incoln_	29	50,5 49	.1 44.7 55.3 .1 39.1 52.1	28 85	54.5 52.0	1	67.0 67.2	2	63.4
5 14	ershell	122					7		2	

Table 5-8. (cont.)

000	MUNICIPALITY	#s1te	es T ₁₀ T ₅₀ T ₉₀ T	en Isla	1,00	C:	<u>,cs</u>	-11 m	4,195,19
			·····	***	es Leg	75111	i Leq		es Leg
67		3	63.7 47.7 39.0 6	3.7		_			
65 69	McKeesport	67	63.9 55.4 50.2 60			đ	60.3	?	70.9
10	McKees Rocks Millvale	70 11	66.5 57.2 50.7 6		57.9 61.3	4 2	62.9 72.0	5	60.0
įΪ	Monroeville	203	60,3 53,3 48,9 50		54.9	25	69.5	7	61.0
12	Moon	204	64.6 55.3 49.6 61	.6 137	59.6	16	69.5	16	71.6
!?	Mt. Lebanon	91	59.3 51.7 47.5 5	.0 00	55.5	2	59.9		
14 15	Mt. Oliver Munhall	0 36	64.4 57.1 52.8 60 56.4 49.7 46.4 52	.8 7 .5 32	59.4 52.2	1	70.4 71.8		
76	heville	19	72.5 64.4 58.3 65			í	60,5	13	72.0
11	M. Braddock	15	60.4 55.8 52.1 57	'.3 11	54.3	•	64.7	į	70.5 62.4
10	li, fayette	176	59.6 40.8 43.2 57	.0 99	57,0	ō	64.7		62.4
19 60	n. Versailles Oakdale	85 7	60.2 53.1 40.7 50 54.1 47.0 42.1 50		53.9 47.4	21	64.4	4	57.7
81	Oakmont	24	62.0 55.4 51.0 58	.5 20		- 1	57.5	?	61.2
Ď.	O'Hera	io	50,3 51.3 47.3 54	.7 41	52,1	Ż	64.1	11	61.5
83	Onto	62	51.1 40.5 35.5 40		47.5	5	56.3	2	57.7
Ŋ	Osborne	.,7	69.6 60.0 54.3 66		60.1	- 1	57.5		
83 86	Penn Hills Pine	250 153	60.2 52.2 47.3 56 55.7 45.5 40.3 58		55.3 53.1	23	64.6 66.3	13	62.1
67	Pitcairn	179	62.3 51,0 47.8 50		55.7	·	00.3	3	62.4
į,	Plataburgh	979	62.4 55.2 51.0 50	.0 630	55.7 56.3	57	66.3	139	66.5
89	Pleasant Hills	35	60.0 52.1 47.0 56	.1 25	53,7	?	04.8	••	
90	Plum Pont Yun	265 13	50.7 48.9 43.9 55 57.8 45.4 43.0 54		55.5	7	60,4	12	65.3
91 92	Port Yue Rankin	'5	64.2 55.6 55.2 60	.4 (1 .6 3	53.9 57.0			1 2	50.8
93	Reserve	29	50.0 40,7 43.0 55	.9 25	56.2			ĝ	55,0
94	Richland	150	53.9 45.0 40,3 50	6 129	50.5	5	60.0	1	47.1
!!	Robinson	131	62.3 53.7 40.2 50	.9 78	56.9	ū	63.8	15	61.2
94 97	Rosslyn Farris	109 0	59.2 50.8 45.8 55 60.9 54.1 51.8 57	.0 134 .3 5	55.0	7	63.1	1	12.0
16	Scott	6Ĭ	50.9 51.2 47.7 53	.4 51	57.5 54.7	5	60.7	3	57.3 56.4
Ħ	Smitckley	ij	50.9 51.2 47.7 53 65.1 57.2 51.9 61 55.7 43.6 38.6 53	6 14	61.7	ī	70,1	•	
00	Serickley Hts.	61	55.7 43.6 38.6 53	.9 50	32.6				
οį	Sevetchley Hills Shaler	25 148	46.1 35.2 34.2 45		47.5	5	63.9	7	70,1
01 03	Sharpsburg	14	57.8 49.3 44.9 54 69.2 61.9 57.6 65	.4 130 .6 4	23.3 60.5	1		á	67.7
й	5. Fayette	172	53.3 44.5 29.7 49	נֿאַ פֿ	52.0	å	77.0 56:3	ÿ	56.9
) 1	5. Park	82	55.5 45.3 40.6 52.	6 54	51.4	4	60.4	13	53.4
	5. Yersailles	7	57.0 40.9 37.4 40		49.6			_	
	Springdale Bore Springdale Twp.	11 25	65.5 56.8 52.6 62 60.7 50,4 45.0 57	.1 A	0.58 0.58	3	73.9	3	62.3 76.0
	Store	26	65.1 56 2 51 2 61	8 15	6).5	á	65.2	â	62.5
Ō	Swissvale	19	57.7 51.4 47.7 54.	.2 15	33.0	Ä	55.6		
	Tarentum	Ìđ	- 37. 9 52.5 47.4 56.	. 12	59.7			ļ	64.1
	Thornturg Trafford	ž	50.2 47.8 45.3 52 67.0 56.5 47.5 64	, n	52.0			1	56.5
	Turtle Creek	ານົ	58.4 52.9 49.3 55.		64.2 50.0	5	60.7	1	61.8
1	Upper St. Clafr	109	- 55.4 47,1 42,5 5 1 ,	9 69	50.4	6	61.9	- ĵ	56.9
8	Yerona	Ą	60.1 53,9 50,1 56,	6 7	56.0			1	55.5
	Yersailles	?	59.3 51.9 47.6 55.		56.4		62.5	1	40.2
	Mall Mrst Døer	16?	56.0 49.6 45.9 52. 52.0 41.1 35.2 49.	15)	40.5 50.0	ļ	51.A 57.A	Ä	63.0
	West Elizabeth	1	66.7 57.7 53.3 63.	4 1	61.0	-		-	61.6
١ ١	Hest Homestead	10	59.3 53.4 49.2 55. 61.3 63.4 49.1 57.	ń ż	52.1	6	65.1	3	64.0
	Hest Miffilm	141	61.2 63.4 49.1 57.	ā 102	24,0	6	65.3	10	60,9
	Hest View	76	97.7 48,8 43.8 54.	4 14	\$3.0				
	M[taker M(taha]]	51	55.0 40.0 44.2 51. 54.0 47.9 43.6 51.		51.4	8	53.9		
	White Dak	69	58.9 50.3 44.9 55,	5 54	55.2	ĭ	60.0		
	iilkins	31 47	86 7 80 4 47 6 53		51,2	á	61.7	7	54.4
	#11kinsburg		59.6 52.4 45,3 56,		55.1	6	40.0	ì	59.1

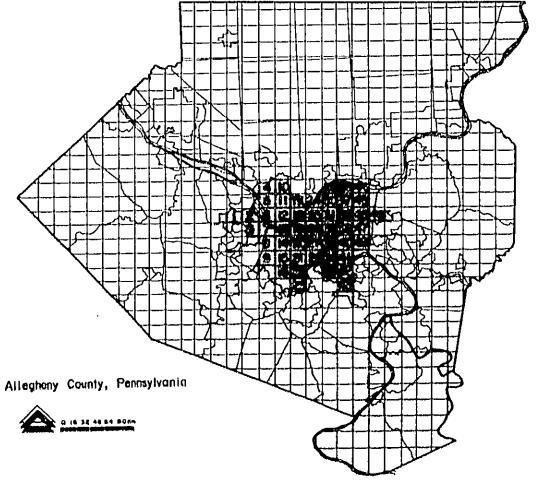


Figure 5-11. Individual BSSU's Comprising the City of Pittsburgh

BSSU	ī ₁₀	T ₅₀	L ₉₀	DSSU	ī ₁₀	Ī ₅₀	L ₉₀	DSSU	ī ₁₀	L ₅₀	L ₉₀
1234567	56.2 61.0 61.0 62.6 60.0 67.7 65.0	48.7 53.4 53.0 51.1 51.1 60.9 59.3	46.5 49.7 50.0 44.3 47.8 56.4 55.8	18 19 20 21 22 23 24	66.7 69.2 69.4 63.3 61.6 57.6 66.4	60.1 63.2 61.8 56.6 53.9 51.7 57.2	56.1 60.9 58.2 51.7 49.1 46.1 51.8	34 35 36 37 38 39 40	63.2 69.3 61.5 61.7 60.5 59.4 62.0	58.1 57.2 53.7 54.0 54.3 52.9 51.9	54.3 49.2 49.4 50.0 49.2 49.3 50.3
8 10 11 12 13 14 15 16	64.7 55.6 62.3 65.3 64.4 75.0 59.3 66.2 58.6 55.1	57.7 50.0 52.7 52.7 56.3 67.1 51.4 59.2 47.8	52.9 46.0 46.2 48.2 52.1 62.0 47.6 54.4 47.2 41.0	25 26 27 28 29 30 31 32 33	67.8 63.5 67.4 59.7 71.0 71.0 61.0 62.4 68.7	62.1 56.6 62.5 52.0 64.5 64.5 55.0 56.1 61.8	58.2 51.4 58.7 47.5 61.3 61.3 51.1 51.2 58.3	41 42 43 44 45 46 47 48 49	58.4 60.8 56.1 60.0 60.5 62.9 59.4 62.0 58.6	51.3 54.0 49.3 52.5 52.0 56.1 52.9 50.8 51.4	47.3 50.1 45.5 48.5 48.2 51.0 49.3 44.2 47.3

Figure 5-12. Computer Analysis for Measurements Taken in the City of Pittsburgh

LEVEL - 1 NO. DIST

1.2 2.5 3.1 3.8 7.1 7.6 9.7 18.2 10.6 12.2 8.1

NO.

94

194

753 1,407

810 945

625

MIDPOINT

LEVEL - 90

NO.

181

309

648

915

006

1,371

1.213 790

DIST

.1 2.3 4.0 8.4 11.8 10.4 17.7 16.4 4.9 3.5 2.1 1.2 8

LEVEL - 50

75

297

482

649 1,050 1,206

1,048 789

657 487

166 106

DIST

3.8 6.2 8.4 13.6 15.6 13.5 10.2 8.5 6.3

LEVEL - 10

MO.

43

86

175

386

498

707

809

958 939

DIST

.ö

2.3

6.4

10.5

SECTION 6. CONCLUSIONS

Community noise legislation must have a firm technical foundation if it is to be effective in controlling noise and in withstanding the anticipated legal and technical cross examination when it is enacted. During the initial stages of the Allegheny County noise program, it was thought that an extensive survey was necessary to formulate such legislation. Since the resulting ordinance was never enacted, however, this hypothesis was never put to a practical test. Hevertheless, this development should not affect the merits of the survey itself.

The survey had two main objectives: (1) to develop the technical foundation for the proposed community noise ordinance, and (2) to define the existing acoustic environment for the entire county. To achieve these goals, a methodology was developed to gather the data and techniques defined to evaluate the results.

The extensive information that was obtained seems to imply that the methodology was adequate to gather sufficient noise data. It should be stated that because the program was designated to encompass the entire county, a trade-off had to be made between the number of sites surveyed and the temporal length of noise sample. Ideally, each site should have been sampled for at least 24 hours, but that would have extended both the survey timetable and budget to unrealistic levels. However, by measuring during peak activity hours of the day (0900-1600 hours), a detailed evaluation of the spatial variation of levels during these high noise periods could be obtained and used as a basis for legislation. This somewhat justified the length of sample versus number of site trade-off.

Regarding the evaluation techniques developed to process the data and incorporate the results into the legislation, it cannot be stated strongly enough that this document only reports the results of a single survey. While some techniques may or may not work in Allegheny County, the results could be entirely different for another geographic area. Only after several surveys are completed can the analysis by the different parameters--BSSU, source, land use, etc.--be either accepted or rejected for universal usage.

The reasoning behind the evaluation by parameters was basic. Noise data were recorded in more than 7,000 sites, with the levels varying as much as 50 dB between different sites. By sorting the data according to the different parameters, it

was hoped that statistical distributions with minimal standard deviations could be created around various mean values. For example, if the L_{50} A-weighted sound levels recorded in all the sites in municipality A formed a normal distribution around 60 dB with a standard deviation of 1 dB, then a L_{50} regulation of 60 dB. would be compatible with the existing environment. In the case of Allegheny County, this analysis did not provide usable data when municipalities were the parameter because the spread of values was too great. However, when the data were analyzed by zoning or land use, the results could be inserted almost directly into the legislation.

The hour-by-hour analysis was used primarily to verify the survey methodology. It had not been expected to produce any unusual results, and this fact is now documented.

The BSSU parameter was the only technique available for developing a spatial picture of the acoustic environment. It is conceded that by shifting the BSSU on the maps, the results in Figure 5.2 could be entirely different. Thus, alleged violators of the anti-degradation section (based on Figure 5.2) could have conducted a separate survey with an entirely different methodology, come up with a different number, and have been perfectly justified in challenging the citation. As a partial solution to this problem, measurement procedures for each section of the proposed noise code were specifically outlined. (See Appendix A). Nonetheless, it is urged that all community noise surveying methods be standardized for future usage.

Both analysis of noise-sensitive areas and of major sources produced results that could be used in the legislation. In the former, the techniques revealed that standards for residential land use would be compatible for noise-sensitive areas. In the latter, justification was provided for setting up regulations for such sources as industry, construction, and traffic.

It is conceded that the present analytic methods could have been refined, and additional methods developed for more accuracy. However, since the major task of the noise program in Allegheny County was regulation and not research, neither the time nor the funds were available to continue these studies. Nevertheless, if the program were to be repeated, the data-gathering procedures would probably be identical and the technical analysis procedures similar.

One major drawback was the time required to completely survey the entire geographic area. However, this period allowed for the training of personnel and the enactment of a public relations program. Also, since the news media became interested in the program and periodically reported on its progress, both accurate

and widespread publicity was obtained. This resulted in more than 1,000 individuals and organizations testifying at the public hearings on the proposed legislation.

It is hoped that the documented results presented in this report will contribute to future attempts to decrease noise.

SECTION 7. REFERENCES

- Caccavari, C. and Schechter, H., "Bakeground Noise Study in Chicago," APCA meeting, 1973.
- 2. Noise Control Study in Toronto, Volume 2, October 1972.
- 3. Bishop, D. and Simpson, M., "Correlations Between Different Community Noise Measures," Noise Control Engineering, Volume 1, No. 2, 1973.
- 4. Chicago Urban Noise Study, BBN Report #1411, November 1970.
- 5. New York Urban Noise Survey, HUD TE/NA 372, November 1972.
- "Report to the President and Congress on Noise," US EPA Gov. Doc. #92-63, February 1972.
- Dietrich, W., "Development of Regulations for Noise at Property Lines," BBN #2177, July 1971.
- 8. EPA #550/9-74-004, "Information on Levels of Environmental Noise Prerequisite to Protect Public Health and Welfare with an Adequate Margin of Safety," March 1974.
- Goff, R. and Rosenberg, C., "Noise Evaluation of Liberty Harbor," BBN #2530, April 1973.

APPENDIX A PROPOSED ALLEGHENY COUNTY NOISE LEGISLATION

This appendix contains the following isolated sections from the proposed Allegheny County Community Noise Legislation.*

1909 - Maximum Permissible Sound Levels Along Lot Boundary Lines

1910 - Vibration Criteria

1912 - Federal Standards

1913 - Construction Activities

1915 - Anti-Degradation

1916 - Measurement Procedure

Sections 1909, 1913, 1915, and 1916 were developed either entirely or partially from the methodology and results described in the text. Section 1910 was developed following an extensive measurement and analysis program, while Section 1912 was based directly on work performed by the Environmental Protection Agency pursuant to the Noise Control Act of 1972.

1909--Maximum Permissible Sound Levels Along Lot Boundary Lines

No person shall cause or no person who has charge, care, or control of any lot shall permit sound to emanate from a lot which exceeds the maximum permissible sound level established by this section.

- .1) Maximum Permissible Sound Levels--The following maximum permissible sound levels are hereby established:
 - a) If the sound emanates from a lot classified as residential, the maximum permissible sound level is:
 - 55 dBA at any point on a boundary separating the residential lot from an adjacent residential lot.
 - 60 dBA at any point on a boundary separating the residential lot from a commercial lot.
 - 65 dBA at any point on a boundary separating the residential lot from an industrial lot.
 - b) If the sound emanates from a lot classified as commercial, the maximum permissible sound level is:
- Sections 1911, 1914, and 1917 have been omitted from this Appendix. Thus, all references to them in the text and especially in section 1916 have been deleted.

- 1) 58 dBA at any point on a boundary separating the commercial lot from a residential lot.
- 60 dBA at any point on a boundary separating the commercial lot from an adjacent commercial lot.
- 3) 65 dBA at any point on a boundary separating the commercial lot from an industrial lot.
- c) If the sound emanates from a lot classified as industrial, the maximum permissible sound level is:
 - 60 dBA at any point on a boundary separating the industrial lot from a residential lot.
 - 2) 63 dBA at any point on a boundary separating the industrial lot from a commercial lot.
 - 3) 65 dBA at any point on a boundary separating the industrial lot from an adjacent industrial lot.
- d) In all instances in which the lot from which noise emanates does not directly adjoin a residential, commercial, or industrial lot, the performance standards governing noise in this section shall apply at the nearest residential, commercial, or industrial lot boundary.
- e) If a mixed lot exists, the least restrictive lot standard shall be used when establishing maximum permissible sound levels under this section.
- .2) Deviations from Maximum Permissible Sound Levels Established in Section 1909.1—The following deviations from the maximum permissible sound levels are permitted for non-impulsive sounds:
 - a) The maximum permissible levels established in Section 1909.1:
 - 1) May be exceeded by no more than:

DURATION	ALLOWANCE
up to 15 min/half hour	+3
up to 7-1/2 min/half hour	+6
up to 5 min/half hour	+ 8

2) Shall be reduced by 5 dBA for sound with a pure tone component.

dBA

3) Shall be reduced by 10 dBA for all measurements taken in residential lots between the hours from 10:00 p.m. to 7:00 a.m., prevailing time.

- 4) The adjustments in subsection .2(a) of this section shall be cumulative.
- .3) Deviations from Maximum Permissible Sound Levels Established in Section 1909.1--The following deviations from the maximum permissible levels are permitted for impulsive sounds:
 - a) The maximum permissible levels established in Section 1909.1:
 - 1) May be exceeded by no more than:

NUMBER OF PEAKS PER HALF HOUR	ALLOWANCE
1	+24
2 .	+18
4	+12
8	+ 6

- 2) Shall be reduced by 10 dBA for all measurements taken in residential lots between the hours from 10:00 p.m. to 7:00 a.m., prevailing time.
- The adjustments in subsection .3(a) of this section shall be cumulative.
- .4) The levels established in this section shall not apply to sound originating from:
 - a) The human larnyx without amplification.
 - b) Refuse vehicles.
 - c) Circulation devices located on residential lots and operating between the hours from 10:00 p.m. to 7:00 a.m., prevailing time.
 - d) In-flight operation of aircraft, including pre-takeoff run-up of aircraft engines.
 - e) Propulsion of railroad trains.
 - f) Recreational facilities.
 - g) Any operation required by the Occupational Safety and Health Act passed as Public Law 91-596 on December 29, 1970.
 - h) Barking dogs unless a petition is submitted which contains an enforcement request by the occupants from two or more dwelling units.
 - i) Commercial farming activities.
 - j) Building repair and lawn maintenance activities between the hours from 7:00 a.m. to 10:00 p.m., prevailing time unless a petition is submitted which contains an enforcement request by the occupants from two or more dwelling units.

- k) Any unit of a multi-unit dwelling and traveling to any other unit in the same dwelling.
- Any site whose reference noise level as defined in Figure 1 of Section 1915 is lower than the criteria established in subsection 1909.1.
- m) Emergency work, operations, and warning devices.

1910--Vibration Criteria

.1) No person who has charge, care or control of any lot from which earthborne vibrations emanate shall produce or permit the production of earthborne vibrations which, when measured at any point on any structure located beyond his boundary line, exceed the criteria in Table I.

	TABLE I			
TYPE OF VIBRATION	CENTER FREQUENCY IN Hz OF THIRD OCTAVE BAND	ALLOWABLE LEYEL		
Impulsive Shock	*	.0142 cm/sec (.0056 1n/sec)		
Intermittent	1.0 1.25 1.6 2.0 2.5 3.15 4.0 5.0 6.3 8.0 10.0 12.5 18 20 25 31.5 40 50 63 80	.61 cm/sec ² (.24 1n/sec ²) .65 cm/sec ² (.26 1n/sec ²) .66 cm/sec ² (.26 1n/sec ²) .67 cm/sec ² (.26 1n/sec ²) .79 cm/sec ² (.26 1n/sec ²) .79 cm/sec ² (.26 1n/sec ²) .79 cm/sec ² (.35 1n/sec ²) .79 cm/sec ² (.54 1n/sec ²) .79 cm/sec ² (.70 1n/sec ²) .71 cm/sec ² (.85 1n/sec ²) .72 cm/sec ² (1.09 1n/sec ²) .73 cm/sec ² (1.71 1n/sec ²) .74 cm/sec ² (2.77 1n/sec ²) .75 cm/sec ² (2.77 1n/sec ²)		

- * Use overall level as defined in subsection 1916.3)b)3).
 - .2) Deviations from Maximum Permissible Vibration Levels:
 - a) If a structure has internal vibrations which exceed the criteria in Table I, then a violation shall occur if the level of external vibrations exceeds the level of internal vibrations in at least one one-third octave band.

1912--Federal Standards

- .1) The following standards promulgated by the Administrator of the United States Environmental Protection Agency pursuant to the provisions of the Noise Control Act of 1972 are hereby incorporated, by reference, as part of the standards and requirements of this article:
 - a) Motor Carriers in Interstate Commerce, Part 202 of Title 40 of the Code of Federal Regulations.
 - b) Compliance with Interstate Motor Carrier Noise Emission Standards, Part 325 of Title 49 of the Code of Federal Regulations.
 - c) Noise Emission Standards for Construction Equipment, Part 204 of Title 40 of the Code of Federal Regulations.
 - d) Railroad Noise Emission Standards, Part 201 of Title 40 of the Code of Federal Regulations.

1913--Construction Activities

No person engaged in construction activities or no person who has charge, care, or control of any lot on which construction activities occur shall permit sound to emanate from that lot which exceeds the maximum permissible sound levels established by this section.

- .1) The following maximum permissible sound levels are hereby established:
 - a) If the sound emanates from a lot on which construction activities occur, the maximum permissible sound level is:
 - 80 dBA at any point on a boundary separating the lot on which construction activities occur from a residential lot.
 - 83 dBA at any point on a boundary separating the lot on which construction activities occur from a commercial lot.
 - 86 dBA at any point on a boundary separating the lot on which construction activities occur from an industrial lot.
 - .a) Maximum permissible levels shall apply at a distance no less than 50 feet from source.
 - b) In all instances in which the lot from which noise emanates does not directly adjoin a residential, commercial, or industrial lot, the performance standards governing noise in this section shall apply at the nearest residential, commercial, or industrial lot boundary.
 - c) If a mixed lot exists, the least restrictive lot standard shall be used when establishing maximum permissible sound levels under this section.

- .2) Deviations from Maximum Permissible Sound Levels Established in Section 1913.
 - a) The same as permitted by Sections 1909.2 and 1909.3.
 - 1) Any construction activity which is required by state or local regulation to occur between the hours of 10:00 p.m. and 7:00 a.m., prevailing time, will be allowed the deviations in Sections 1909.2(a)1, 1909.2(a)2, 1909.2(a)4, 1909.3(a)1, and 1909.3(a)3 only.
- .3) The levels established in this section shall not apply to sounds originating from:
 - a) Lawn maintenance and home repair.
 - b) Pile drivers.
 - c) Any operation required by the Occupational Safety and Health Act, passed as Public Law 91-596, on December 29, 1970.
 - d) Emergency work, operations, and warning devices.

1915--Anti-Degradation

- .1) If any residential lot is located in an area whose reference noise level as defined in Figure 1 is below those levels established in Section 1909.1, the reference noise level shall represent the maximum permitted noise limitation that may be received at the boundary line of the residential lot.
- .2) Deviations from Maximum Permissible Sound Levels Established in Section 1915.1.
 - a) The same as permitted by Sections 1909.2 and 1909.3.
 - b) The maximum permissible levels established in Section 1915.1 may be exceeded by:
 - 1) 3 dBA for sounds emanating from commercial lots.
 - 2) 5 dBA for sounds emanating from industrial lots.
 - c) The adjustments in subsection .2 of this section shall be cumulative.
 - Exemptions.
 - a) Same as in Section 1909.4.
 - .4) Updating.
 - a) Figure 1 shall be updated every 5 years using a methodology determined by the Director.

1916--Measurement Procedures

The measurement procedures listed in this section shall be used as the method to determine the existence of a violation of this article.

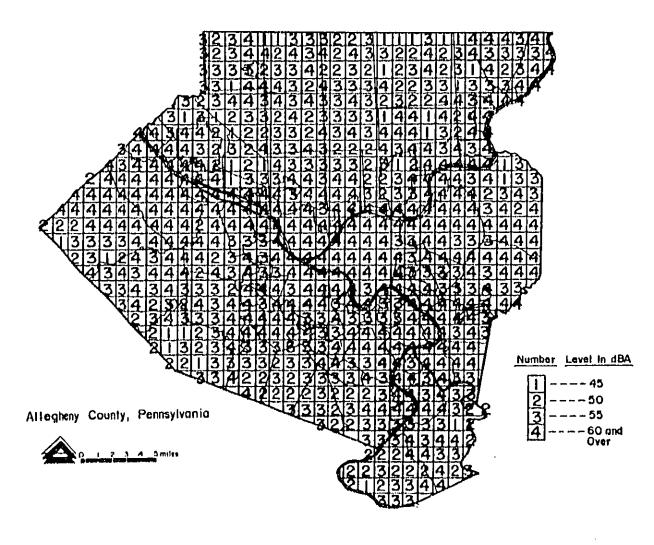


Figure 1. Reference Noise Level

- Measurement Instrumentation
- a) Instruments used for measurements shall conform to or exceed the following standards, unless otherwise stated:
 - 1) A.N.S.I. S1.4-1971--Specifications for Sound Level Meters, Type II.
 - 2) A.N.S.I. S1.11-1966--Specifications for Octave, One-Half Octave, and One-Third Octave Band Filter Sets, Class II.
 - A.N.S.I. S1.6-1967--Preferred Frequencies and Band Numbers for Acoustical Measurements.
 - 4) A.N.S.I. S1.8-1969--Preferred Reference Quantities for Acoustical Levels.
- b) All measurement instruments shall be accountically calibrated in accordance with the manufacturer's instructions before and after each noise survey and at intervals not exceeding two hours when the instrument is used longer than a two-hour period.
- c) Windscreens shall be used with all microphones according to the manufacturer's specifications. Measurements shall not be taken whenever the wind speed exceeds 24.16 kph (15 mph).
- .2) The following measurement procedure shall be used to determine if a violation exists pursuant to Section 1909.
- a) Set sound level meter microphone at a height of 1.2 meters (4 feet) \pm .3 meters (1 foot) on adjacent boundary closest to noise source or on lot from which a complaint arises.
 - 1) If a complaint arises from a multi-story structure, the height of the sound level meter shall be adjusted so that it is on a direct line between the noise source and noise receiver.
- b) Calibrate sound level meter according to manufacturer's specifications before and after each noise survey.
- c) The microphone shall be fitted with a windscreen and oriented consistent with the manufacturer's recommendations for the flattest frequency response and at least .9 meters (3 feet) away from any adjacent structures.
 - d) Set meter for A-weighting and fast response.
 - e) Compare measured levels with permissible criteria.

- 1) Non-impulsive noise.
 - .1) Connect third octave band pass filter set and determine if pure tone component exists.
 - .2) Determine permissible noise levels.
 - .3) Fill in Row #2 of Table 3 by adding the permissible noise level to the numbers in Row #1.
 - .4) Read needle of sound level meter and check appropriate column.
 - .a) If an extraneous noise occurs, such as a car passby, ignore the reading, wait another 10 seconds and continue the procedure.
 - .5) A violation occurs when the checks in any column exceed the shaded squares or if the sound level at any time exceeds the levels in Column #4 by 3 dBA or more.
- Impulsive noise.
 - .1) Determine permissible noise level.
 - .2) Fill in Row #2 of Table 4 by adding the permissible noise level to the numbers in Row #1.
 - .3) Read maximum deflection of sound level meter for each impulse and check appropriate column.
 - if sound level is below criteria in column #1, ignore reading and wait for next impulse.
 - .b) Continue survey for one-half hour.
 - .4) A violation occurs when:
 - .a) The checks in any column exceed the shaded squares; or
 - .b) The criteria in column #4 is exceeded for any impulse by 3 dBA or more; or
 - .c) D > 1.5 where:

$$0 = \frac{(C_1)}{8} + \frac{(C_2)}{4} + \frac{(C_1)}{2} + \frac{(C_4)}{1}$$

where $C_n = \#$ counts in nth column

f) Maintain acoustic surveillance of extraneous noise sources to insure that measurements are from sound under investigation. In order for a violation to occur, the source or sources of noise must be identifiable in relation to the ambient noise and must exceed the ambient noise by 5 decibels or more in at least one octave band.

Column #3

Column #4

Column #2

Column #1

BEST AVAILABLE COPY

TABLE 4

Column #1	Column #2	Column #3	Column #4
Row #1 0 to 6 dBA	6.1 to 12 dBA	12.1 to 18 dBA	18.1 to 24 dBA
Row #2	1	1	/1/
<u>ż</u>	ż	///	
3	3		•
6			
	_		

- .3) The following measurement procedure shall be used to determine if a violation exists pursuant to Section 1910.
 - a) An accelerometer meeting the following specifications shall be used:
 - A flat frequency response between at least 1 to 200 Hz, over which the sensitivity shall not vary by more + 5 percent.
 - 2) The transverse axis sensitivity shall be less than 5 percent of the main axis sensitivity.
 - 3) The variation in sensitivity shall not exceed 1 percent per degree Celsius between -20.0 and +50.0 degrees Celsius (-4° F. to +122° F.).
- b) Using the manufacturer's instructions, connect the accelerometer to a sound analyzer which meets the following specifications:
 - 1) Applicable parts of A.N.S.I. Standard S1.4-1971, Type 1.
 - 2) A.N.S.I. Standard S1.11-1966, Class II.
 - 3) The frequency response of the measurement system shall be limited from 1 to 100 Hz when used to measure the "overall" acceleration level.
- c) Calibrate the measurement system before and after vibration survey in accordance with the manufacturer's instructions by coupling the accelerometer with a calibration system meeting the following specifications:
 - 1) The calibration frequency shall be within the range of 1 to 125 Hz.
 - 2) The vibration output of the calibrator shall be known to within \pm 10 percent when loaded with the accelerometer mass.
- d) Mount accelerometer to floor, walls, or ceiling by imbedded stud, magnet, adhesive, or probe.
 - 1) Mass of accelerometer shall be less than 10 percent of the mass of the vibrating member.
 - e) Set sound analyzer for fast response.
 - f) Compare measured levels with permissible criteria.
 - 1) Intermittent vibration
 - .a) Set sound analyzer to "overall" as defined in step 1916.3(b)3).
 - .b) Affix the accelerometer to at least two measurement locations on the structure (floor, walls, ceiling, etc.).
 - .c) Read maximum deflections of needle.

- .d) At the location having the largest "overall" acceleration, connect the third octave band pass filter and determine the maximum level in each third octave band.
- .e) A violation occurs if the measured level exceeds the criteria in Table I in any one-third octave band.
- 2) Shock vibration
 - .a) Set sound analyzer to "overall" as defined in step 1919.3)b)3).
 - .b) Affix the accelerometer to at least two measurement locations on the structure (floor, walls, ceiling, etc.).
 - .c) Read maximum deflection of needle.
- .5) The following measurement procedure shall be used to determine if a violation exists pursuant to Section 1913.
- a) Set sound level meter microphone at a height of 1.2 meters (4 feet) \pm .3 meters (1 foot) on adjacent boundary closest to noise source or on lot from which a complaint arises.
- 1) Relocate microphone so that it is at least 15.2 meters (50 feet) from the nearest piece of construction equipment emitting noise.
 - b) follow steps b through f in subsection 1916.2.
- .7) The following procedure shall be used to determine if a violation exists pursuant to Section 1915.
 - a) Same as Subsection 1916.2.

APPENDIX B SAMPLE OF RAW NOISE SURVEY DATA

O80318YARROW	18B1CR3		0104	110573112966625654
O80321MAGEE WOMENS HOSPITAL	1881C	02	0107	102273092063545048
O80322CRAFT/MCKEE	188R3C3		01	102273062266625854
O80323ATWOOD/DAWSON	188R3		010711	110573114874676052
O80401PEMBRUKE/AMBERSON	188R1R3		01	102273090076665553
O80402WESTMINSTER PLACE	188R1R3		01	101773084070635451
0804031VY ST	180R3R1		01	101773085865586349
0804040FF MURRAY HILL RD	188K3R1		01	101773090770655954
080405BENEDUM HALL AT CHAT	1881C		02	101673160564605854
080406DEVON/WARWICK	188R1R3		0107	101673152060565350
080407UNGER	188R1		02	101773092872665654
080408DUNMDYLE/KIMPLING	188R1		0103	101773094556514846
080409NEGLEY/FAIROAKS	186R1R3		01	102473154162524441
080410MURRAY HILL PL/WOODL	1881C		74	101673155070645752
080411C M U	1861C		0107	101673153366575452
080412FAIROAKS/MALUERN	186R1		01	101673091062585553
080413IVERNESS	188R1		01	101773101804565048
080414SOLEWAY	188R1	01	14	101773103250555047
08415SOLEWAY/MURRAY	188R1		0111	101673133061565250
080417FORBES/ALBERMELF	188R11C		01	101673134068585148
080418NORTHUMBERLAND/BENNI	188R1		01	101673093572655650
080419AYLESBORO	188R1R3		01	101673095068625148
080420MURRAY/AYLESBORO	188R1		01	101673131570655450
080423MURDOCK/DARLINGTON	108R1R3		01	101673125871645954
080424DARLINGTON/HIGHTMAN	188R1R3		01	101673100565564644
080425MURRAY/BARTLETT	186C3R1		01	101673102068605044
080501BEECHWOOD/BEECHMONT	188R1		01	101673103578766255
080502HASTINGS/EDGERTON	188R1		01	101673143074706253
080502JUNIATA	188R1		03	101673144264544947
080504MURTLAND	188R1		040111	101673146769675256
08050PEHN/LANG	188R1		01	103073126565504441
080506HASTINGS	188R1		01	103073114883736460
080507WICKINS	188R1		01	101673136466625450
080508WILLARD/CEMETARY	1885PR1	010	40111	101673141576555450
O80509EDGERTON/LLOYD	188R1		010311	103073123776685954
080510ELM	228R1		0111	103073125264534338
O80510REVNOLD/FRICK PARK	1885PR1		010401	011474101966605452
080511DENNISTON	188R1	01	0112	103073130967584339
WIT THE ACT DITH AND A VAL				

		01	100173083449575452
080203BEDFORD/JUNHILL	188R3	03	100173085073665852
080204MORGAN ST	188R3	03 01	100173092576695648
080205NEAR HERON	188R3C3	= :	100173100580696250
080206BEDFORD/SEAL	70010	~ -	092173112081756558
080207WEBSTER/PERRY	188R3C3	01	100173105580675853
08020BCHAUNCEY/WYLIE	188R3	01	100173111567605450
OROZOGOFF ELBA	188R3	01	100173113068615349
0802100FF BRAKENRIDGE	1881C	01	100173151561565044
080211CENTER/GREEN	188C3R3	01	092173113576666056
O80212ROSE/ADDISON	180R3	01	092173115088635546
080213FOOTBALL FIELD	1885PR3	10	092173120559514542
ORO21ANEAR WADSWORTH	186R3	11	092173122561544441
080215ROBINSON/DARRIAGH	186R310	01	100173144566625753
080216DINWIADLE	188R3	01	092173104571655756
080217BENTLEY/NIGH	188R3	01	092173104371633736
080218DENTLEY/KIRKPATRIK	1885PR3	01	092173102064595844
080219ALLEQUIPPA CIRCLE	188R3	11	092173093075665848
080220DUNSEITH TERRACE	188R310	01	092173095660524847
080221TUSTIN/MILDEABURGER		01	092173100572605248
080222TUSTIN/SUMMONVILLE	188M1SF	01	092173081588645955
080222TUSTIN/SUMMON XIIIA 080223MOULTRIE/TUSTIN	1885P	01	092173084576686259
08022300011816/103110	188SP	01	092173090074706866
080224BRENHAM/5TH 080225ROBINSON/CRAFT	188Ml	01	092173101586786860
080XX3W0MINGOM owner	188R1	0106	092173091562585553
080301CHEROKEE	180R1	01	102273124261585238
080302CENTRE	18883	0106	102273125777696153
080303DITHRIDGE	188R3R1	0104	102273132086595452
080304BAYARD	188R1R3	10604	102273133756494442
080305DEVONSHIRE	1881CRL	020101	102273135369666049
080306UNIVERSITY DRIVE	188R11C	0111	110573102164584843
0803071XTTON	1881C	0111	110573095758504643
080308RUSKIN	188R3C3	0111	102273144068615754
080309HENRY	1881CR3	0104	102273142167595248
08031 ODEVONSHIRE PLACE	1881C	0111	102273141066544744
080311DESTO/TERRACE	1881C	01	102273120475686157
OBO312FIFTH/THACKERY	1881C	01	102273093483766862
080313FORBES/SCHENLEY	1881C	01	110573111276666056
080314FORBES	1881C	0120406	102273152570646861
080315BUREAU OF MINES	188C31C	77	110573105066605652
OBO316FIFTH/DARRACH			102273114578736660
080317ATWOOD/SENTOTT	108C3R3	****	

and the second s

073416BELLVUE	196SPR1	040109	011174102757524846
073417JACKS RUN	196R1SP 04	0104	041874092877715344
073419ALLEMAC	196R1SPC301	030102	041874084360534742
073420HANWAY	196SPR1 016	030103	041874084951484440
073424PERRYSVILLE	196SPR1	0104	041874090655524845
073425PERRYSVILLE	196SPR1 01	0104	041874091671665851
073501HAWTHORNE	223R1SP	0301	041874094768534035
073502GROVE	196R1SP	011721	041874095770534139
073505MCKNIGHT	196R3R1C	01	041874101071655854
073506RIDGEWOOD	223R1SP 03	041114	041874104565554437
073510MICKNIGHT	196C3SPRI,	01	041874101974696154
073515MCKNIGHT	196SPR1C3	01	041874110577696257
073520RENFER	196SPR1	0103	041874115361555249
07322WEST VIEW	196SPR1 04	011104	041874112666604842
073523WALNUT	196R1SPC304	0104	041874111757574945
073524EAKIN	196R1SP	010406	041874114056524845
080101MEADOTA	188M4	0113	111472090966625856
080102LACOCK/GOODRICH	188M4	0105	111473092374706460
08010416тн	188M4	01	092073144586817065
080105COLEVILLE/PENN	188M4	01	092073150580686158
080108ETNA/12th	188C5	05	092073141569645957
080109LIBERTY/14TH	188M4SP	01	092073143078736561
080110CLIFF/CASSATT	188R3SP	030405	092073125076675654
08011FT DOQ/6TH	188C5	01	092073135080736764
080112LIBERTY/9TH	188C5	01	092073133082766964
080113LIBERTY/GRANT	188¢5	01	092073131080746459
080114BEDFORD	188C5R3	02	092073123560575351
080115WYLIE/PROTECTORY	188C3R3	01	092073122071625654
080116MARKET/FORBES	188C5	01	092073111575686361
080117WM PENN/5TH	188C5	01	092073114078737067
080118COURT/TUNNEL	188C5C3	01	092073115577726662
080119COURT	188R303	01	092073120567716463
080120CRAWFORD/FORESIDE	188R3	01	092073090076656058
080121WOOD/FORT PITT	188C5	01	092073105581757168
080122GRANT/2ND	188C5	01	092073104081756865
080123LOCUST/BOYD	1881CC5	01	092073102568656260
080124LOGUST DUQ UNIV	1881C	01	092073101561585554
080125LOCUST/PRIDE	1881CM1	02	092073091578756865
080201BIGELOW BLVD	188SPM4	01	092073091578756865
080202SOMMERS ST	188R3SP	10	100173103576716662
UUUAUADUMMMS ST	エロロおつり は	AU	Y110 N Y C C N Y C L X O II Y

FYA. ONAC LIBRARY COTA

ENVIRONMENTAL PROTECTION AGENCY Office of Noise Abstement and Control AW 471 Washington, D.C. 20460

Official Business

POSTAGE AND FEES PAID ENVIRONMENTAL PROTECTION AGENCY

EPA-335 SPECIAL 4th CLASS RATE BOOK

If your address is incorrect, please change on the above label; tear off; and return to the above address, if you do not desire to continue receiving this technical report series, CHECK HERE . I lear off label, and return it to the above address.