

EFFECTIVE PERCEIVED NOISE LEVEL VERSUS DISTANCE CURVES FOR CIVIL AIRCRAFT

Dwight E．Bishop
John F．Mills
Jane M．Beckmann

July 1974

Submitted to：
Mr．Damon Gray
Office of Noise Abatement
Environmental Protection Agency
Washington，D．C． 20460
Reference：EPA Contract 68－01－2265

table of contents

Page
I. INTRODUCTION 1
II. NOISE DATA RRESENTAIION 2
III. TECHNICAL BACKGROUND 5
A. General Approach 5
B. Analytical Noise Model 6
C. Net Thrust 9
D. Sources of Nolse Data 1.0
E. Comparisons of Noise Curves 13
F. Comparison of EPNL Curves from Different Sources 13
G. DC-8 and 707 Aircrart Retrofit With Acoustically Lilned Nacelles 24
REFERENCES 26
APPENDIXES:A. Tabulation and Graphs of EPNL Versus Distance Datafor Civil A1reraftA-1

LIST OF TABLES AND FIGURES

TABLES Page
I. Summary of Aircraft Nolse Data Sources 11
FIGURES1. Simplified Level Fiight Geometry for CalculatingEPNL Values at Varyine Distances7
2. Comparison of EPNL Vs Distance Curves for Different Assumed Angles of PNLTM Noise Radiation - DC-8 Air- craf't Nolse Data 14
3. Comparison of EPNL Vs Distance Curves Based on Noise Spectra From Different Sources - DC-8 and 707 Take- offs 15
4. Comparison of EPNL Vs Distance Curves Based on Noise Spectra from Different Sources - DC-8 and 707 Approaches 16
5. Noise Spectra for Development of EPNL Vs Distance Curves - DC-8 and 707 Takeoffs 17
6. Noise Spectra for Development of EPNL Vs Distance Curves - DC-8 and 707 Approach 18
7. Comparison of EPNL Versus Distance Curves from Dif- ferent Sources - 707 and DC-8 Aircraft with JT3D Serites Engines - Takeoffs 19
8. Comparison of EPNL Versus Distance Curves from Dif- ferent Sources - 707 and DC-8 Alrcraft with JT3D Series Engines - Approach 20
9. Comparison or EPNL Versus Distance Curves from Dif- ferent Sources - 737, DC-9 and 727 Alrcraft with JT8D Serles Englnes - Takeoff 21
10. Comparison of EPNL Versus Distance Curves from Dif- forent Sources - 737, DC-9 and 727 Alrcraft with JI'8D Series Encines - Approach 22
11. Comparison of Iypical Takeoff and Approach Noise for 707 and DC-8 Alrcraf't with and without Quiet Nacelle Retrofit 25

EFFECTIVE PERCEIVED NOISE LEVEL VERSUS DISTANCE CURVES FOR CIVIL MIRCRAFT

I. INTRODUCTION

This report provides effective perceived nolse level (EPNL) data for civil aircraft in a form useful for noise exposure forecast (NEF) calculations. The EPNL noise data are presented in graphical and tabular form; the report also summarises the data sources and technical analyses used in developing the noise data. The noise data will also be furnished to the EPA as a punched card deck, directly suitable for use in the USAF/EPA/NEF computer program: ${ }^{2}{ }^{\text {* }}$

Noise data are included for ali major current U.S. civil transport and business jet aircraft and for most general aviation aircraft. Data are also provided for possible retrofit of fourengine low bypass ratio (LBPR) turbofan alreraft, with acoustically lined nacelies.

The correlation of noise level data with aircraft operations (in terms of aircraft speed and engine operating parameters) varies in detall, from specific curves for different engine parameters and speeds for major elvil transport alrcraft to feneralized noise curves for rather broad categories of propeller afroraft.

Section II presents the nolse data. Secilun III describes the sources of noise data, describes analysis methods used to develop the curves and discusses some of the technical problems involved in developing the notse curves.

[^0]
II. NOISE DATA PRESENTATION

The noise exposure forecast (NEF) procedure for calculating the nolse environment in the vicinity of the airport utilizes the effective percelved noise level as the basic noise event description for a moving alrcraft. Since this noise information is needed at varying distances from the alroraft, the general input requirement is for a set of EPNL values tabulated at various distances (typically from 200 feet to 25,000 feet). The NEF aircrart model assumes that, for a given civil aircraft, an effective perceived noise level can be deflned from the knowledge of the type of alrcraft, basic engine operating parameters, air speed and atmospheric propagation conditions. Two sets of EPNLA versus distance curves are used:
a. Alr-to-ground propagation.
b. Ground-to-ground propagation.

In the program, algorithms are provided for the transition between air-to-ground and ground-to-ground curves.* The atr-to-ground propagation curves assume atmosphertc absorption in accordance with SAE AKY 866^{3}. The ground-to-ground propagation curves assume similar atmospheric absorytion plus excess ground attenuation ${ }^{2}$.

The noise level versus distance curves glven in this report are developed for standard day conditions ($59^{\circ} \mathrm{F}$ and 70 relative humidity). Curves developed tor thene condiliont reneraliy provide rather conservative estinates of nolse levels for the range

[^1]of temperatures and humidity often encountered in civil airports In this country ${ }^{1}$. The basic NEF computer program does permit entry of separate notse level curves for special conditions, when deened desirable.

The noise data are presented in craphical and tabular form in Appendix A. Table A-l provides a guide to the selection of noise lnformation for both general aircraft classifications and specific aircraft types. ERNL curves for alr-to-ground propagation are shown in Figures A-l through A-19. For many alreraft, the ground-to-ground curves are also shown in the erraphs. I'able A-? Includes tabulation of both alr and eround propagation curves.

For the turbojet, and turbofon alreraft, nolse durves are referenced In terms of an encine operating parameter, typically net thrust.* The specific thrust values to use for a particular takeof'f or landing profile, taking into account specific operating procedures, operating weights, alrspeed, flap settings, etc., can be determined from the calcilation procedure and alreraft data provided In Reference 4.

For most afreraft inciuded in this repord, nolse data are tabulated for typical takcoff and approach thrust settings. However, for the two, three and four-enelne low bypass ratio turbofan transport; aircraft, a more complete set of ourves is provided. For these aircraft, typical approach and takcoff curves are also indicated, to be used when more detailed information about specific engine operating parameters is not known.

In the current NEF computer procrams, one additional correction is applied to the nolse data. The EPNL values are adjusted for

[^2]alreraft altitude on the basis oi an acoustic impedance correction, $\Delta_{\rho \mathrm{c}}$;
$$
\Delta_{\rho c}=1.0 \log \frac{\rho c}{\rho_{0} c_{0}}=1.0 \log \left(\frac{\rho}{\rho_{0}}\right) \sqrt{\frac{T}{T_{0}}}
$$
where:

```
\rho = alr denslty at alreral't ajt:ltude
c = speed of sound at alreraft altlude
T = absolute temperature at aircraft altitude
```

and subserfpt "o" refers to sea level stamiard day unless spectally adjusted.

Report 2747

Bolt Beranek and Newnan Inc.

III. TECHNICAL BACKOROUND

A. General Approach

For NEF calculation, EPNL values as a function of distance are needed over a rante of distances varying from the order of 200 feet to the order of 25,000 feet, as a general case. Field noise data for any particular aircraft and operating condition are typically available only at one, or at most, a few distances. Thus, to cenerate curves there is a need for both:
a. Accurate noise level measurements at one or more distances.
b. An analytic model for generating EPNL values as a function of distance.

Even for those few cases, from elaborate test prograns, where Eriv values have been mêasured over a mather wide range of distances, a model for generating EPNL values as a function of distance is valuable.

Analytic models of varying complexity oan be developed for predicting aircraft noise. The more complex models often require more complete noise information than is generally avallable from most reported field measurements. The basic approach for this study has been to utilize a relatively simple analytic model to Eenerate sets of EPNL curves from selected sets of noise data. Where avallable, nolse data from several different sources have been used, particularly in developing the noise curves for the major transport aircraft. The resulting noise versus distance curves have then been compared with noise curves from previous siudies. As a general case, this procedure will disclose differences and Inconslstencies among sets of nolse curves. Englneering judgment has been made to select what is belleved to be the
mosi representative set of curves. Because the amount of noise data and the number of check points varies constderably with the type of alrcraft, the degree of cross checking and comparison varies considerably among the difterent aircraft.

As will be shown later, the EPNL curves developed with the analytic models will often show mlnor "klnks" in curves or variations In slopes over small distance ranges that result from details of the particular nolse spectra used. Sometimes such kinks result from the use of the curront tone correction procedures used in calculating EPNL's.* A number of these "kinks" or irregularities in curves have been removed.

B. Analytical Nolse Model

The model assumed for developing EPNL values at the different distances assumes that the EPNI at any distance lis equal to the maximum tone-correcteci perceived noise ievel, pwlitif, plus a "duration factor", D:

$$
\text { EPNL }=P N L I M+D
$$

If the quantities in the above equation are known at one distance, x_{0}, and the PNLTM can be estimated for another distance, x, the duration adjustment, ΔD, is assumed to be simply lo times the logarlthm of the ratio of the two distances:

$$
\Delta D=10 \log \frac{x}{x_{0}}
$$

The working equations can be developed in more complete form with yeference to Figure l. por simplicity of discussion we assume

[^3]
level flight noise data has been obtained at position P (see Figure 1) with all data adjusted to standard day conditions and the desired aircraft altitude and reference air speed.* At P, the distance of closest approach, x_{0}, is known. Also, corrected values of the effective perceived noise level, EPNL x_{0}, and the one-third octave band spectra at the time of PNLTM, $S_{P L} \mathcal{I x}_{0}$, are known. The angle of radiation from the ajroraft that produced $\mathrm{SPL}_{1 x_{0}}, 0$, is also known.**

At any distance x, it is assumed that the PNLTM at x can be calculated from the corresponding one-third octave band levels:

$$
\begin{equation*}
S P L_{1 x}=S P L_{1 x_{0}}-\frac{\alpha_{i}}{\sin \theta}\left(x-x_{0}\right)-20 \log \frac{x}{x_{0}} \tag{1}
\end{equation*}
$$

where α_{1} ar'e the one-third octave band atmospheric absorption coefficients at standard day conditions.

With PNLIM $_{x}$ known, EPNL ${ }_{x}$ is EIVen by:

$$
\begin{equation*}
\text { EPNL }_{x}=\text { EPNL }_{x_{0}}+\operatorname{PNL}_{x}-P^{2 N L T} x_{0}+20 \log \frac{x}{x_{0}} \tag{2}
\end{equation*}
$$

This model, then, requires knowledee of the one-third octave band spectrum observed at the time of the maxfmum tone corrected perceived nolse level, and the angle of radiation, elther known or assumed. In applying the model. to available data, values of θ were often not known, and estimates of θ were then used.

* Reference 6 outlines the calculation steps for correcting level flight data to reference conditions.
\#\#As discussed in Reference 6 , a choice of θ and accompanying noise spectra based upon PNLM, rather than PNLTM, WIIl reduce the extent of underestimation of EPNL values at large distances. For simplicity, this distinction is ignored in the analysis given above.

C. Net Thrust

In this report, the EPNL curves for turbojet and turbofan aircraf't are identified with a net thrusti value (F_{n}). In many of the curves published by adrrrame manufacturers, the nolse curves are given in terms of the "referred net thrust", F_{n} / δ, where δ is the ratio of the atmospheric pressurc at aircraft altitude to the sea level atmospheric pressure. For turbofian aircraft, alrframe manufacturers often reference the nolse curves to the "corrected Low pressure rotor speed", $N_{2} / \sqrt{\theta}$, where θ is the ratio of the absolute temperature at the alrcraft altitude to the absolute temperature at sea level.

It is beyond the scope of this report to examine, in any detail, the reasons for the choice of reference condition. Most controlled fleld noise measurements are taken at relatively low altitudes (between 400 and 2,000 feet), where the δ and θ adjustments are relatively smail. Thus, it is difficult to show conclusively, from examination of such field data, the need for the pressure and temperature adjustments.

The argument for using F_{n} as the basic engine parameter rests on the assumption that the sound power output from the engine is most likely to be proportional to the actual net thrust produced rather than a (fictitious) thrust corrected back to sea level conditions. In other words, it is ascumed that as the aircraft climbs at a constant alr speed, and net thrust decreases as atmospheric pressure decreases, the nolse output will also decrease.

It is recognized that the actual varlation of noise output, for complex engine designs, will not vary simply with any single parameter over the entire rance of possible operatinf conditions. However, net thrust appears to be the most useful slinple parameter for many engines.

D. Sources of NoLse Data

A number of sources of nolse data have been used in developing; EPNL versus distance curves. The sources of data, with reference to the general type of measurement condition, can be classified as (a) controlied tests and (b) airport measurements (uncontrolled). The use of the word 'controlled' Implies control, and/or knowledge of alraraft performance and englne operatinc parameters. The quality of the nolise data in terms of accuracy of the acoustic measurements often is not sifnificantly different between the controlled or airport tests, but aircraft Information is less detailed in the latter.

Data from alrport meaturements serve well in obtaining typical shapes of EPNL versus distance curvos. However, to per the EPNL curve as a function of known englne parameters, the controlled tests are often most useful.* Table I provides a brief summary of the sources of the data for different major aircraft types. BBN-supplied data includes alrport measurements obtained at airports such as Los Angeles International Alrport, San Jose Municipal Airport, Orange County Alrport; and Anchorage, Alaska, among others. The business jet information provided by BBN came largely from certification tests conducted in full accordance with PAR 36, plus other controlled and alrport tests. Most propeller adrcraft measurements were alrport measurements; however, results from some controlled measuronents were alsa utilized.

The data from the aircraft manufacturers includes noise spectra Information furnlshed informally by Boeing and Douglas. The data also includes noise curves and spectral information contained in

[^4]
TABLE I

SUMMARY OF ALRCRAFT NOISE DATA SOURCES

Aircraft Type	BBN	Airrrame Manuf'acturer	Other
4-Iingine LBPR (70\%, DC-8) Transport	Atrport	Controlled	Controlled
4-Engine LbPR (707, DC-8) Transport Retrofit	-	Controlled	--
```2, 3-Engine LBPR Transport (737, DC-9, 727)```	Airport	Controlled	Controlled
4-Engine HBPR (717)	ALrporis	Controlied	--
3-Engine HBIR (DC-10)	Alrport	Controlled	--
Business Jet Aircraft	Controlled, Alrport	--	--
Propeller Mircralt	Alrport, Controjied	--	Controlled

```
a number of draft reports prepared for the \(\mathrm{FAA}^{7-12 *}\) and data reported to NASA \({ }^{3}\). Other sources of information include tests conducted for the \(\mathrm{FAA}^{14-17}\).
```

Some comparisons of noise curves derived from different sources Will be given in the next section. In Eeneral, there are inconsistencies in the noise data and there ls lack of agreement in noise curves reported by different airframe manufacturers for alroraft utilizing the same englnes. Even for alporaft which have been in service for a number of yoars (civil turbofan transports powered with J'P-3D and JT-8D engines for example) there is considerable disagreement arid current controversy about noise output.

Where a cholee had to be made between alfferlne and conflicting data sources, or curves, we have selected curves that predict higher levels rather than lower levels. Cenerally where there was large disagreenent in data sources, we have been able to cross check curves by reference to data frum other sources or from other aircraft having erifines of nearly similar characteristics.

With regard to the general slope of the EPNL versus distance curves, there is cood consistency in curves for:

- turbojet aircraft (high thrust oniy)
- high bypass ratio turbofan ailreraft
- piston-powered propeller airccaft:

There are more inconsistencies in EPNL eurves aliong engines and power settirigs for:

- turbojet aircraft (Intermediate and low thrust)

[^5]- low bypass ratio turbofan aireraft
- turboprop aircraft


## E. Compartsons of Noise Curves

In this section, some EPNL versus distance curves from different sources and for different assumptions will be compared.

The EPNL versus distance curves are somewhat sensitive to the choice of the radiation angle in the analytic model used. Figure 2 illustrates this sensitivity by showing curves developed from takeoff and approach spectra for two assumptions as to the PNLTM radiation ancles for cach spectra. It can be seen that the curves are not extremely sensitive to cholce of the angle of radiation. Obviously, as angles are either made larger or smaller than $90^{\circ}$, the slope of the curves as a function of distance gradually will increase.

To illustrate the effect of differences in spectrum shape, Figures 3 and 4 compare EPNL curves for typlcal approach and takeoff conditions for four-eng:ne LBPR ajrcraft (707 and DC-8's). The noise spectra used in generating the curves are presented in Figures 5 and 6.

Of most interest in Flgures 3 and 4 are the curve shapes rather than the absolute lovels. Note that the approach curves, in particulat, show sizeable differences in shape in the distance range between approximately 2,000 fect, and 10,000 feet.

## F. Comparison of EPNL Curves from Dit ferent Sources

The EPNL curves presented in this report differ in varying degrees from curves developed previousj.y. lifures 7, 8, 9 and 10 compare the curves developed in this sthdy for two, three and four-engine


FIGURE 2. COMPARISON OF EPNL VS DISTANCE CURVES FOR DIFFERENT ASSUMED ANGLES PNLTM NOISE RADIATION - DC-B AIRCRAFT NOISE dATA


FIGURE 3. COMPARISON OF EPNLVS DISTANCE CURVES BASED ON NOISE SPECTRA



FIGURE 4. COMPARISON OF EPNL VS DISTANCE CURVES BASED ON NOISE SPECTRA FROM DIFFERENT SOURCES - DC-8 AND 707 APPROACHS


FIGURE 5. NOISE SPECTRA FOR DEVELOPMENT OF EPNL VS DISTANCE


## 



FIGURE 7. COMPARISON OF EPNL VERSUS DISTANCE CURVES FROM DIFFERENT SOURCES - 707 AND DC-8 AIRCRAFT WITH JT3D SERIES ENGINES -


FIGURE 8. COMPARISON OF EPNL VERSUS DISTANCE CURVES FROM DIFFERENT SOURCES - 707 AND DC-B AIRCRAFT WITH JT3D SERIES ENGINES-
APPROACH


FIGURE 9. COMPARISON OF EPNL VERSUS DISTANCE CURVES FROM DIFFERENT SOURCES - 737, DC-9 AND 727 AIRCRAFT WITH JT8D SERIES ENGINES-


FIGURE 10．COMPARISON OF EPNL VERSUS DISTANCE CURVES FROM DIFFERENT SOURCES－737，DC－9 AND 727 AIRCRAFT WITH JT8D SERIES ENGINES－
APPROACH

Report 2747
Bolt Beranek and Newman Inc.

LBPR ailrcraft with curves reported from several other sources. Figures 7 and 8 compare the nolse curves for four-engine LBPR aircraf't (707 and DC-8 series aircralt) with those developed earlier under FAA sponsorship and widely used in NEF computations. ${ }^{14}$ Also shown are curves reported by Douglas and Boeing in draf't reports to the FAA. ${ }^{7-8 \#}$

With reference to the $F A A$ curves, the takeoff curve of Figure 7 shows slightiy higher nolse levels in the range from about 1,000 feet to 6,000 feet with silchtly lower levels at either smaller or greater distances. The increased slope of the EPNL curve at large distances results from consideration of air absorption at lower frequencies ( 500 Hz and lower) which was generalily neglected in the earlifer FAA curve development.

Comparison of the approach curve with the earlier fAA curve (Figure 8) show that the current curves lie above the FAA curve over the entire slant distance range, except at very large slant distances. The differences amount to several $d B$ in the frequency range from approximately 2,000 to 8,000 feet.

Comparison of the curves for two and three-engine aircraft, shown in Pigures 9 and 10, show that the current curve for takeoff generally exceeds the FAA curve for distances between about 500 feet to 20,000 feet. Differences in excess of 2 dB occur In the range from about 1200 feet to 10,000 feet.

The differences between the current and FAA curves for approach noise for the two and three-engine LBPR aircraft (Figure 10) are most significant in the range from about 2,000 to 8,000 feet

[^6]where the newer curves are typleally of the order of 2 to 3 dB higher than the $F A A$ curves.

In general, the current curves acree well with the Boeing and Douglas curves (wilh the exception of the Boeing curve for 737 takeoff noise) for distances of about 2,000 feet or less. At larger distances, differences tend to increase.*

## G. DC-8 and 707 Aircraft Retrofit with Acoustically Lined Nacelles

Figure A-2 in the Appendix presents sets of EPNL curves for DC-8 and 707 turbofan aircraft retrofit with acoustically-lined nacelles (sound absorption material [SMM] retrofit). These curves are based upon measurements on a 707 reported by Boeing In Reference 12. The acoustic performance of similar retrofits for DC-8 series afrcraft may differ due to differences in nacelle design.

Figure 11 compares the curves for retrofit and non-retrofit aircraft for takeoff thrust and a representative approach thrust. At takeof'f, the retrofit is moderately effective (producing reduction of 2 dB or more) only at distances of less than about 1,500 feet. Sizeable reduction in approach noise ( 5 dB or more) occurs at distances less than about 6,000 feet.

[^7]

FIGURE 11. COMPARISON OF TYPICAL TAKEOFF AND APPROACH NOISE FOR 7O7

## REFERENCES

1. W. J. Galioway, "Community Noise Exposure Resulting from Aircraft Operations: Technical Review", Alr Force Report AMRL TR-73-106, 1974.
2. N. H. Reddingilus, "Commanity Noise Exposure Resulting from Aircraft Operations: Computer Program Operator's Manual", Air Force Report AMRL TR-73-1.08, 1974.
3. SAE Nerospace Recommended Practice 866 "Standard Values of Atmospheric Absorption as a Function of Temperature and Humidity for Use in Evaluating Mircraft Noise", 1964.
4. W. J. Galloway, J. F' Mills, J. Spencer', "Methods and Data for Estimating Civil Aircraf't Takeof'f and Approach Profiles for Noise Exposure Computalitons", BBN Report 2746, August 1974.
5. SAE Aerospace Recommended Practice 1071, "Def'initions and Procedures for Computing the Effective Percelved Noise Level for Flyover Alrcraft Nolse", 1972.
6. D. E. Bishop, W. J. Galloway, "Community Nolse Exposure Result1ng from Alrcraft Operations: Acquisition and Analysis of Aircraft Noise and Performance Data", Alr Force Report AMRL TR-73-10\%, 1974.
7. J. S. Goodman, et al, "Alrcraft Nolse Definition: Phase I, Analysis of Existing Data for the $D C-8, D C-y$ and DC-lO Alrcraft, FAA Report; FAA-EQ-73-8, (Draft), August 1973.
8. B. G. Williams, R. Yates, "Alreraft Noise Definition: Individual Mircraft Technical Data, Model 707", FAA Rept. FAA-EQ-73-7, 2, (Draft), December 1973
9. B. G. Williams, R. Yates, "Aircraft Noise Definition: Individual Aircraft Technical Data, Model 727", FAA Rept. FAA-EQ-73-7, 3, (Draft), December 1973.
10. B. G. Williams, R. Yates, "Aircraf't Noise Definition: Individual Aircraft Technical Data, Model 737", FAA Rept. FAA-EQ-73-7,4, (Draft), December 1973.

Il. B. G. Williams, R. Yates, "Alrcraft Nolse Definition: Individual Mircraft Technical Data, Model 747", FAA Rept. FAA-EQ-73-7, 5, (Draft), December 1973.
12. T. F. Mayer, et al. "FAA ITBD Gutnt: Nanalle Retrofit Feasioility Program, Volume III", FAA Rept. FAA-RD-73-131, 111 (Draft), February 1974.
13. NASA SP-220, "NASA Acoustically Treated Nacelle Program", October 1969.
14. D. E. Blshop, M. A. Simpson, "Nolse Exposure Forecast Contours for 1967, 1970 and 1975 Operations at Selected Alrports", FAA Rept. FAA-NO-70-8, September 1970.
15. C. S. Tanner, "Measurement and Analysis of Noise from Aircraft in Level Flight (727, KC-135, 707-320B and DC-9)", FAA Rept. FAA-RD-71-83, September 1971.
16. C. S. Tanner, "Measurement and Analysis of Noise from Alrerift During Approach and Departure Operations (727, KC-135, 707-320B and DC-9)", FAA Rept. FAA-RD-71-84, September 197].
17. D. C. Gray, "Results of Noise Surveys of Seventeen General Aviation Type Aircraft", FAA Rept. FAA-EQ-73-1, December 1972.
-28-

## APPENDIX A

TABUL̇ATION AND GRAPHS OF EPNL VERSUS DISTANCE DATA FOR CIVIL, AJRCRAFT

This Appendix contains EPNL versus distance data for civil alrcraft In both tabular and graphical formats. The nolse data are presented in Figures $A-1$ through $A-19$, and in Table A-IT. Table $A-I$ is a guide to the selection of the approprlate graph or section of Table A-II. Alrcraft are Identifled by general classification and by specific model where appropriate.

Engine thrust settings for Jet alrcraft are identifled either in terms of net thrust (Fn) per engine, or, in the case of high bypass ratio (HBPR) turbofan transport aircraft, in terms of the engine Low pressure rotor speed ( $N_{1}$ ).

For most alreraft, two sets of data are provided: one set for typical takeoffs, and the other for typical approaches. For the larger civil transport aircraft, additional sets of noise data at intermediate engine thrusts are provided.

The EPNL values are stated for a reference alrspeed $V_{0}$. For another airspeed, $V$, the EPNL values should be adjusted, by the addition of $\Delta V$, where:

$$
\begin{equation*}
\Delta V=1010 \mathrm{~V} \frac{\mathrm{~V}_{\mathrm{O}}}{\mathrm{~V}} \tag{dB}
\end{equation*}
$$



## 

TABLE A-II-1

TABULATION OF EPNL VALUES fOR DIFPERENT AIRCRAFT

Afrcraft:			Four Engine LBPR Turbofan Transport Aircraft - $707 \&$ DC-8 with JT3D Series Engines   (Note: Subtract 2 dB for $\mathrm{DC}-8-63$ A1rcrart)									
Operation: Alrspeed: Power:	$\begin{aligned} & 160 \mathrm{Kt} \\ & \mathrm{Fn} \quad 4000 \mathrm{lbs} \end{aligned}$		Approach 1 бо Kt		$\begin{aligned} & 160 \mathrm{Kt} \\ & \mathrm{Fn}=8000 \mathrm{lbs} \end{aligned}$		$\mathrm{Fn}=\begin{gathered} 160 \mathrm{kt} \\ 10000 \mathrm{lbs} \end{gathered}$		$\mathrm{Fn}=\begin{aligned} & 160 \mathrm{Kt} \\ & 12000 \mathrm{bs} \end{aligned}$		$\begin{array}{r} \text { Takeoff } \\ 160 \mathrm{kt} \\ =15000 \end{array}$	
	EPNL, dB		EPML, dB		EPML, dB		EPNL 2 dB		EPML, dB		EPNL, dB	
$\begin{gathered} \text { Distance, } \\ \text { ft. } \end{gathered}$	A1.r to Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { Ground } \end{aligned}$	Air to Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { Ground } \\ & \hline \end{aligned}$	Alr to Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { Ground } \end{aligned}$	Air to Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { Ground } \end{aligned}$	Air to Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { Ground } \end{aligned}$	Air to oround	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { Ground } \end{aligned}$
200	120.0	120.0	122.5	122.5	124.5	124.5	126.0	126.0	127.0	227.0	127.5	127.5
250	218.5	118.5	221.0	121.0	122.9	122.9	124.4	124.4	125.4	125.4	125.9	125.9
315	116.9	116.9	119.4	119.4	121.2	121.2	122.7	122.7	123.7	123.7	124.2	124.2
400	115.0	125.0	117.5	117.5	119.5	119.5	121.0	121.0	122.0	122.0	122.5	122.5
500	112.9	112.9	115.4	115.4	117.7	117.7	119.2	119.2	120.2	120.2	120.7	120.7
630	110.7	210.7	113.2	113.2	115.7	115.7.	117.3	117.3	118.4	118.4	118.9	118.9
800	108.4	108.3	110.9	210.8	113.4	113.3	115.2	115.1	116.5	126.4	117.0	216.9
1,000	106.0	105.8	108.5	108.3	111.0	110.8	113.0	112.8	114.5	114.3	115.0	114.7
1,250	103.6	103.3	106.1	105.8	108.9	108.6	110.8	210.5	112.3	122.0	113.0	112.5
1,600	101.2	100.7	103.6	103.2	106.2	105.8	108.5	108.1	110.0	109.6	110.8	110.1
2,000	98.5	97.9	101.0	100.4	103.5	102.9	106.0	105.4	107.5	106.9	108.5	107.5
2,500	95.5	94.6	98.0	97.1	100.5	99.6	102.9	102.0	104.6	103.7	106.0	104.4
3,150	22.0	00.7	94.5	93.2	27.0	25.7	99.3	98.0	101.4	100.1	103.3	100.7
4,000	88.0	86.0	90.59	1.288 .5	93.0	91.0	95.5	93.5	98.0	96.0	100.8	96.9
5,000	84.0	81.2	86.5	83.7	89.0	86.2	91.5	88.7	94.4	91.6	97.7	92.5
6,300	80.2	75.2	82.7	78.7	85.2	81.2	87.5	83.5	90.5	86.5	94.8	88.3
8,000	76.5	71.0	79.0	73.5	81.5	76.0	83.9	78.4	86.9	81.4	91.9	83.6
10,000	73.0	65.8	75.5	68.3	78.0	70.8	80.5	73.3	83.5	76.3	89.0	79.2
12,500	69.5	60.0	72.0	62.5	74.5	05.0	77.3	67.8	80.3	70.8	86.1	74.6
16,000	66.0	54.3	68.5	56.8	71.0	59.3	74.0	62.3	77.0	65.3	83.0	69.0
20,000	62.5	48.0	65.0	50.5	67.5	53.0	70.6	56.1	73.6	59.1	79.6	63.4
25,000	58.9	40.9	61.4	43.4	63.9	45.9	67.0	49.0	70.0	52.0	76.0	57.5
	$430{ }^{\circ}$											

##  

TABLE: A-II-2

TABULATION OF EPNL VALUES FOH DIFPERENT AIRCRAFT

Aircraft:			Four Engine LBPR Turboran Transport Mreraft - ; 07 \& DC-8 With JT3D Series Engines with Retroitt Lined Nacelles									
Operation: Airspeed: Power:	$\begin{aligned} & 160 \mathrm{Kt} \\ & \mathrm{Fn} \stackrel{1}{=} 4000 \mathrm{lbs} \end{aligned}$		Approach $100^{0} \mathrm{Kt}$		260 Kt		$\mathrm{Fn}=160$	Kt	160 kt		Fn $\begin{array}{r}\text { Take } \\ 160\end{array}$	fr   Kt   00 1bs
	EPNL 2 CB		EFNL, CB		EPML, CB		EPNL, dB		EIPIL ${ }^{\text {d }}$ dB		EP! $L_{2}$, dB	
$\begin{gathered} \text { D1stance, } \\ \text { ft. } \end{gathered}$	A1r to Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { Ground } \end{aligned}$	Air to Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { Ground } \end{aligned}$	A1r no Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { around } \end{aligned}$	Apr to oround	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { Ground } \end{aligned}$	As! to Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { around } \end{aligned}$	Air to Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { Ground } \end{aligned}$
200	104.5	204.5	108.0	208.0	111.5	111.5	114.5	114.5	117.5	117.5	120.5	120.5
250	103.3	103.3	106.8	106.8	110.3	110.3	213.3	113.3	116.3	116.3	119.4	119.4
315	101.9	101.9	105.5	105.5	109.0	109.0	112.0	112.0	215.0	115.0	118.2	118.2
400	100.5	100.5	104.0	104.0	107.5	107.5	110.5	110.5	113.5	113.5	117.0	117.0
500	99.1	99.1	102.3	102.3	105.7	105.7	108.8	108.8	111.8	111.8	1.15 .8	115.8
6ju	97.6	97.5	100.6	200.5	103.8	103.7	107.1	107.0	110.1	110.0	114.6	224.5
800	96.1	95.9	98.8	98.6	101.9	101.7	105.3	105.1	108.3	108.1	113.3	113.1
1,000	94.8	94.4	97.0	96.6	100.0	99.6	203.5	103.1	106.5	106.1	112.0	111.6
1,250	92.6	91.9	95.1	94.4	98.0	97.3	101.6	100.9	204.7	104.0	110.6	109.9
1,600	90.7	89.6	93.2	92.1	96.0	94.9	99.7	98.6	102.9	101.8	109.0	107.9
2,000	88.5	86.8	91.0	89.3	94.0	92.3	97.5	95.8	101.0	99.3	107.0	105.3
2,500	86.1	83.4	88.6	85.9	9.1.6	88.9	95.2	92.5	98.8	96.1	104.8	102.1
3,150	83.3	79.5	85.8	82.0	88.8	85.0	92.7	88.9	96.5	92.7	102.5	98.7
4,000	80.5	75.5	83.0	78.0	86.0	81.0	90.0	85.0	94.0	89.0	100.0	95.0
5,000	77.6	73.4	80.1	73.9	83.1	76.9	87.1	80.9	91.1	84.9	97.4	91.2
6,300	74.6	67.1	77.1	09.6	80.1	72.6	83.9	76.4	87.9	80.4	94.7	87.2
8,000	71.6	62.8	74.1	65.3	77.1	68.3	80.7	71.9	84.7	75.9	91.9	83.1
10,000	68.5	58.4	71.0	60.9	74.0	63.9	77.5	67.4	81.5	71.4	89.0	78.9
12,500	65.1	53.6	67.6	56.1	70.6	59.1	74.3	62.8	78.3	66.8	86.1	74.6
16,000	61.5	48.5	64.0	51.0	67.0	54.0	71.0	58.0	75.0	62.0	83.0	70.0
20,000	57.9	43.1	60.4	45.2	63.4	48.6	67.6	52.8	71.6	56.8	79.6	64.8
25,000	54.3	36.8	56.8	39.3	59.8	42.3	64.0	46.5	68.0	50.5	76.0	58.5

## 

TABLE A-II-3
tabulation of ephl values for different aircraft


TABLE A-II-リ

## TABULATION OF EPML VALUES FOR DIFPEREIJT MIRCRAFM'

Aircraft: Two Engine LBPR Turbofan Aireraft - 737 \& DC-9 with Jli8D Series Engines

Operation: Alrspeed: Power:	$\begin{gathered} 160 \mathrm{Kt} \\ \text { Fn } 4000 \mathrm{lbs} \\ \text { EPNL, dB } \end{gathered}$		$\begin{gathered} \text { Approach } \\ 160 \mathrm{Kt} \\ \mathrm{Fn}=6000 \mathrm{lbs} \\ \text { EPNL, } \mathrm{dB} \end{gathered}$		$\begin{gathered} 160 \mathrm{Kt} \\ \mathrm{Fn}=8000 \mathrm{lbs} \\ \text { EPHL, } \mathrm{dB} \\ \hline \end{gathered}$		$\begin{gathered} 160 \mathrm{Kt} \\ \mathrm{Fn}=10000 \mathrm{Jbs} \\ \mathrm{EF!L}, \mathrm{~dB} \\ \hline \end{gathered}$		$\begin{array}{r} \text { Take } \\ 160 \\ \mathrm{Fn}=12 \\ \text { EPML } \end{array}$	ff   Kt   000 lbs $2 \mathrm{~dB}$
$\begin{gathered} \text { Distance, } \\ \text { rt. } \\ \hline \end{gathered}$	A.ir to around		A1p to Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { Ground } \end{aligned}$	A1r to Ground	$\begin{aligned} & \text { oround } \\ & \text { to } \\ & \text { Ground } \\ & \hline \end{aligned}$	Alr to Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { around } \end{aligned}$	Air to Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { Ground } \end{aligned}$
200	210.0	110.0	112.5	112.5	114.5	11.4 .5	116.5	116.5	119.0	119.0
250	108.7	108.7	111.2	111.2	113.2	113.2	115.3	115.3	117.8	117.8
315	207.2	107.2	109.7	109.7	111.7	111.7	113.9	113.9	116.4	116.4
400	105.5	105.5	108.0	108.0	110.0	110.0	122.5	112.5	115.0	115.0
500	103.3	103.3	105.8	105.8	107.8	107.8	110.7	110.7	113.6	113.6
630	100.7	100.6	103.2	103.1	105.6	105.5	108.8	208.7	112.1	112.0
800	98.1	97.9	100.6	100.4	103.3	103.1	106.9	106.7	110.6	110.4
1,000	95.5	$95.1+4000$	- 98.0	97.6	101.0	100.6	105.0	104.6	109.0	108.6
1,250	92.8	92.2418	95.4	94.8	98.7	98.1	103.0	102.4	107.4	106.8
1,600 1200	90.0	69.1	92.7	91.8	96.4	95.5	101.0	100.1	105.7	104.8
2,000	87.0	85.5	90.0	88.8	94.0	92.8	99.0	97.8	204.0	102.8
2,500	83.9	81.8	87.2	85.1	91.4	89.3	96.9	94.8	102.0	99.9
3,1.50	80.7	77.8	84.4	81.5	88.7	85.8	94.8	91.9	99.8	96.9
4,000	77.5	73.0	81.5	77.0	86.0	81.5	92.5	88.0	97.5	93.0
5,000	74.2	68.5	78.5	72.8	83.3	77.6	90.2	84.5	95.2	89.5
6,300	70.8	63.7	75.4	68.3	80.6	73.5	87.9	80.8	92.9	85.8
8,000	67.4	58.9	72.2	63.7	77.8	69.3	85.5	77.0	90.5	82.0
10,000	64.0	54.2	69.0	59.2	75.0	65.2	83.0	73.2	88.0	78.2
12,500	60.5	49.1	65.8	54.7	72.2	61.1	80.2	69.1	85.2	74.1
16,000	57.0	44.2	62.5	49.7	69.0	56.2	77.0	64.2	82.0	69.2
20,000	53.2	38.5	58.9	44.2	65.0	50.9	73.6	58.9	78.6	63.9
25,000	19.3	31.4	55.1	37.2	62.0	44.1	70.0	52.1	75.0	57.1

TABLE -I IT

TABULATION OF EPNL VALUES FOR DIFFERENT AIRCRAFT


TABLE: A-II-6

TABULATION OF EPHL VALUES FOR DIEFEREAT ATRCHAPT

Aircraft:	Three Engine HBER Turbofan Transport Alrcraft											
	$\begin{gathered} \text { DC-10-10 } \\ \text { CF6Serfes } \\ \text { Engines } \end{gathered}$		$\begin{gathered} \text { DC-10-10 } \\ \text { CFG Series } \\ \text { Engines } \\ \left(50^{\circ} \text { Flaps }\right) \end{gathered}$		DC-10-10		DCim10-10		DC-10-40			
			CFG	eries	JT8D	Series	J'T8	Series				
				1nes		nes		des				
			(250 Flaps)		e3		nes					
Operation:Airspeed:	Takeof:				Approach160 kt		Approach				Approach	
	160 Kt					Kt	Takeoff		160 kt			
A1rspeed: Power:	$\mathrm{N}_{1}=$	3420			$N_{1}{ }^{\text {a }}$	2600	$\mathrm{H}_{2}=$	2300	$\mathrm{H}_{1}{ }^{=}$	3350	$\mathrm{N}_{1}=$	400
	EPHL 2 dB		EPOL, dB				$\mathrm{EPHL}_{2} \mathrm{CB}$		EPIIL, $d B$		EPML, CB	
$\begin{gathered} \text { Distanee, } \\ \text { it. } \end{gathered}$		around		Ground		Ground		Ground		Ground		
	Air to	ro	Alr to	to	A1r to	to	Air to	to	Alr to	to		
	Ground											
200	112.0	112.0	109.5	109.5	206.0	106.0	113.0	113.0	108.5	108.5		
250	111.0	111.0	108.4	108.4	104.7	104.7	112.0	112.0	207.4	107.4		
315	109.8	109.8	107.1	107.1	103.2	103.2	110.8	110.8	106.1	106.1		
400	108.5	108.5	105.5	205.5	101.5	101.5	109.5	109.5	104.5	104.5		
500	107.0	107.0	103.7	103.7	99.7	99.7	108.0	108.0	102.7	102.7		
630	105.4	105.3	101.9	101.9	97.9	97.9	106.4	106.3	100.9	100.9		
800	103.7	103.5	100.0	99.9	96.0	95.9	104.7	104.5	99.0	98.9		
1,000	102.0	101.6	98.0	97.7	94.0	93.7	103.0	102.6	97.0	96.7		
1,250	100.2	99.6	95.9	95.4	91.9	91.4	101.2	100.6	94.9	94.4		
1,600	98.4	97.5	93.8	93.0	89.8	89.0	99.4	98.5	92.8	92.0		
2,000	96.5	95.0	91.5	90.4	87.5	86.4	97.5	96.0	90.5	89.4		
2,500	94.6	92.2	89.1	87.5	85.0	83.4	95.6	93.2	88.1	86.5		
3,150	92.6	88.8	86.6	83.5	82.3	79.2	93.0.0	89.8	85.6	82.5		
4,000	90.5	86.3	84.0	79.4	79.5	74.9	91.5	87.3	83.0	78.4		
5,000	88.3	82.7	81.4	75.3	76.7	70.6	89.3	83.7	80.4	74.3		
E, 300	85.9	78.9	78.7	71.1	73.8	66.2	86.9	79.9	77.7	70.1		
8,000	83.5	75.1	75.9	66.8	70.9	61.8	84.5	76.1	74.9	65.8		
10,000	81.0	70.2	73.0	62.4	68.0	57.4	82.0	71.2	72.0	61.4		
12,500	78.3	76.3	69.9	58.7	64.6	53.4	79.3	67.3	68.9	57.7		
16,000	75.5	61.9	66.5	53.4	61.0	47.9	76.5	62.9	65.5	52.4		
20,000	72.3	56.8	63.1	47.8	57.4	42.1	73.3	57.8	62.1	46.8		
25,000	68.5	53.3	59.5	39.1	53.8	33.4	69.5	51.3	58.5	38.1		

## M

## TADLE A~LI-7

TABULATIOI OF EPHL VALUES FOR DIFPEREHT AIRCRAPG


## 

TAELE A-II-8

TABULATION OF EPNL VALUES POR DIFPERENT AIRCRAFT


## 

TABLE $A=I T-9$

TABULATIOH OF EPML VALUES FOR DIFFEREIT AIRCRAFI

Aircratt	Bustmess Jet Aircraft											
	Lockheed```Jetitar I/C-140 Four P'f 12A-6A Turbojet Eng. Takeoff 145 Kt Fn = 2800 lbs. EPNL, dB```		Lockheed   Jetster I/C-140   Four Pף 12A-6A   Turbojet Encs.   Approach   135 Kt $\mathrm{Fn}=1270 \mathrm{lbs} .$ $\qquad$		```North American Sabre 80 Two CF700-2D-2 Turbofan Eng. Takeoif 140 kt. Fn = 3450 1bs. EPNL, AB```		North American Sabre 80   Two CF700-2D-2   Turbotan Ene.   Approach 140 kt .   $\mathrm{Fn}-865 \mathrm{2bs}$.   EPHL, IB		```North Amerlcan Sabre 60 Two PTIM2H-8 Turbojet Eng. Takeof? 145 kt. Rn=2800 lbs. EPIIL, dB```		```Horth American Sabre 60 Two Prl24-4 Turbojet Eng. Approach 135 kt, Fn=800 ibs. EFNL, dB```	
Operation:   Airspeed:   Power:												
$\begin{gathered} \text { Distance, } \\ \text { it. } \end{gathered}$	Alr to Ground	Ground to   Ground	Ar to Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { Ground } \end{aligned}$	Air to Ground	$\begin{aligned} & \text { Grourd } \\ & \text { to } \\ & \text { oround } \end{aligned}$	A.tr to Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { Ground } \end{aligned}$	Asp to Ground	Ground to   Ground	A1r to Ground	Ground   to   Ground
200	123.9	123.9	109.7	109.7	11.6 .4	116.4	104.1	104.1	121.9	12.2.9	101.7	104.7
250	122.6	122.6	108.5	108.5	114.7	114.7	102.7	102.7	120.6	120.6	103.5	103.5
315	121.2	121.2	107.3	207.3	112,8	112.8	101.2	101.2	119.2	119.2	102.3	102.3
400	119.8	179.8	106.0	106.0	111.0	111.0	99.7	99.7	117.8	117.8	101.0	101.0
500	118.3	118.2	104.7	104.7	109.3	109.3	98.0	98.0	116.3	116.2	99.7	99.7
630	116.7	116.6	103.3	103.2	107.5	107.5	90.2	96.1	114.7	124.6	98.3	98.2
800	115.0	114.8	101.7	101.6	105.4	105.2	94.1	94.0	113.0	112.8	96.7	96.6
1,000	113.1	112.8	100.1	99.9	103.3	103.0	91.8	92.6	111.1	110.8	95.1	94.9
1,250	111.1	110.7	98.4	98.0	101.1	200.5	89.3	89.0	109.1	108.7	93.4	93.0
1,600	109.0	108.3	96.5	96.0	98.7	97.5	86.5	85.9	107.0	106.3	91.5	91.0
2,000	106.8	105.7	94.5	93.7	96.1	94.9	83.3	82.5	104.8	103.7	89.5	88.7
2,500	104.6	102.9	92, ?	91.2	93.9	92.1	79.8	78.5	102.6	100.9	97.2	86.2
3,150	102.3	99.7	89.8	88.3	91.4	88.9	76.3	73.9	100.3	97.7	84.8	83.3
4,000	200.0	96.1	86.7	84.6	88.9	84.9	73.0	69.4	98.0	94.1	81.7	79.6
5,000	97.6	91.9	83.5	80.6	86.2	80.5	69.9	64.8	35.6	89.9	78.5	75.6
-0,300	94.9	87.4	80.1	76.3	83.6	75.8	66.6	59.8	92.9	85.4	75.1	71.3
8,000	92.0	83.7	77.0	71.9	80.8	71.9	63.7	55.6	90.0	81.7	72.0	66.9
10,000	88.8	79.7	73.9	67.3	77.7	67.7	60.7	50.8	86.8	77.7	68.9	62. 3
12,500	85.4	75.3	70.3	61.6	74.5	63.0	57.4	45.0	83.4	73.3	65.3	56.6
16,000	81.8	70.2	66.2	55.7	70.9	57.2	53.7	38.3	79.8	68.2	61.2	50.7
20,000	77.9	64.4	61.5	48.8	66.8	49.8	49.7	25.6	75.9	62.4	56.5	43.8
25,000	73.4	57.5	56.1	37.3	62.8	39.5	44.6	10.0	71.4	55.5	52.1	32.3

## $\cdots$ $\cdots \cdots$ …...1 $1 . .$. Fr.... <br> T M...

TABLE A-II-10
'TABULATION OF EPIL VALUES FOR DIFHERENT AIRCRAFT

Afreraft:   Operation:   Airspeed:   Power:	4-Engine Turboprop Transport Lockheed Electra, $\mathrm{C}-130$				2-Engine Turboprop Transport With Dart Engines F-27, 113-748				2-Engine Turboprop A1rcraft with PT 6 Engines DHC-6 Twin Otter			
	$\begin{aligned} & \text { Takeoff } \\ & 170 \mathrm{Kt} \end{aligned}$		Approach 140 Kt		Trakeotr$140 \mathrm{Kt}$		Approach 120 Kt		$\begin{gathered} \text { Takeoff } \\ 70 \mathrm{Kt} \end{gathered}$		$\begin{gathered} \text { Approach } \\ 65 \mathrm{Kt} \end{gathered}$	
	EPNL ${ }_{2}$ dB		EPNL, dB		EPML, dB		EPIUL, dB		EPNL, ${ }_{2}$ d		EPIHI, dB	
$\begin{gathered} \text { Distance, } \\ \text { ft. } \end{gathered}$	Air to Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { Ground } \end{aligned}$	Als to Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { Ground } \end{aligned}$	Alr to Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { Ground } \end{aligned}$	Alr to (tround	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { grourd } \end{aligned}$	Alr to Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { Ground } \end{aligned}$	A1r to Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { ground } \end{aligned}$
200	104.5	104.5	102.2	102.2	107.4	107.4	207.7	207.7	99.7	99.7	96.3	96.3
250	103.3	103.3	100.9	100.9	106.3	106.3	106.4	106.4	98.5	98.5	95.0	95.0
3.5	102.2	102.2	99.7	99.7	105.1	105.1	105.0	105.0	97.2	97.1	93.6	93.6
400	101.0	100.9	98.3	98.3	103.9	1.03 .9	103.5	103.4	95.7	95.7	92.1	92.1
500	99.7	99.7	96.9	90.9	102.7	202.7	101.8	101.8	94.3	94.2	90.6	90.5
630	98.4	98.3	95.3	95.3	101.5	101.4	100.0	99.9	92.7	92.6	89.0	88.8
800	97.1	96.9	93.7	93.5	100.2	100.0	98.0	97.8	91.1	90.8	87.2	87.0
1,000	95.7	95.4	91.8	91.5	98.8	98.4	95.8	95.6	89.4	88.9	85.2	85.0
1,250	94.2	93.7	89.9	89.4	97.4	96.7	93.5	93.0	87.7	86.7	83.1	82.7
1,600	92.7	91.9	87.9	87.6	96.0	94.9	90.8	90.1	85.9	84.3	80.8	80.7
2,000	91.1	89.4	85.8	85.2	94.5	92.9	87.9	86.7	84.0	81.6	78.2	77.4
2,300	89.4	86.2	83.5	82.5	92.9	90.0	84.7	82.9	82.1	78.7	75.4	74.3
3,150	87.4	82.8	81.3	79.4	91.2	86.7	81.6	77.7	79.9	75.3	72.5	70.8
4,000	85.3	78.4	79.1	75.5	89.4	82.7	79.0	73.6	77.8	71.6	69.2	66.9
5,000	83.1	74.7	76.8	71.5	87.5	78.4	76.5	69.1	75.5	67.3	65.4	62.0
6,300	80.9	70.7	74.4	67.3	85.4	73.8	73.9	64.2	73.1	62.8	60.9	55.7
8,000	78.5	67.4	71.8	63.9	83.2	71.2	71.1	59.2	70.5	56.6	57.1	49.0
10,000	76.1	63.6	69.0	60.1	80.8	68.2	68.5	53.9	67.7	50.9	53.0	41.6
12,500	73.5	59.6	66.0	56.5	78.1	64.8	65.7	46.8	64.7	43.8	48.0	30.5
16,000	70.8	54.5	62.5	50.4	75.2	61.1	62.6	39.5	60.6	33.4	41.5	
20,000	67.9	48.8	58.6	42.1	71.8	50.6	59.3	26.6	56.1		34.6	
25,000	64.7	41.6	54.4	31.6	06.9	49.0	52.6		50.9		26.2	

## 

TABLE A-II-11

TABULATIOH OF EPHL VALJES FOR DIPFEREHT AIRCRAFT

Arcraft :		4-Engine Trans	Piston rt		$(>12,5$	$\begin{aligned} & 2-\operatorname{Enes} \\ & \text { Tbs. } \end{aligned}$	Piston port   . Gross	Wt, )
Operation: Alrspeed:	Take 140	ofr		t.	Take 140	it.	Appr 120	$\begin{aligned} & \text { oach } \\ & \text { Kt. } \end{aligned}$
	EPM	, dB	EPIJ	dB	EPIHL	dB	EPI	dB
Dlstance, rt.	Alr to Ground	$\begin{aligned} & \text { Oround } \\ & \text { to } \\ & \text { Gyound } \end{aligned}$	A1r to Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { Ground } \end{aligned}$	Asp to Ground	around to Ground	Air to Ground	Ground to Ground
200	111.7	111.7	101.7	101.7	108.7	108.7	98.7	98.7
250	110.6	110.6	100.5	100.5	107.6	107.6	97.5	97.5
315	109.4	109.4	99.3	99.3	106.4	106.4	96.3	96.3
400	108.2	108.2	98.0	98.0	105.2	105.2	95.0	95.0
500	107.0	106.9	96.8	96.7	104.0	103.9	93.8	93.7
630	105.7	105.4	95.4	95.3	102.7	102.4	92.4	92.3
300	104.4	104.0	94.0	93.7	101.4	101.0	91.0	90.7
1,000	103.0	102.4	92.5	92.0	100.0	99.4	89.5	89.0
1,250	101.5	100.5	90.9	90.1	98.5	97.5	87.9	87.1
1,600	100.0	98.6	89.3	88.0	37.0	95.6	86.3	85.0
2,000	98.4	96.4	87.6	85.8	95.4	93.4	84.6	82.8
2,500	96.7	93.5	85.8	82.9	93.7	90.5	82.8	79.9
3,150	95.0	90.4	84.0	79.8	92.0	87.4	81.0	76.8
4,000	93.1	86.8	82.0	76.3	90.1	83.8	79.0	73.3
E,000	91.2	83.3	80.0	72.5	88.2	80.3	77.0	69.5
6,300	89.1	79.8	77.8	68.8	86.1	76.8	74.8	65.8
8,000	86.8	76.3	75.5	65.0	83.8	73.3	72.5	62.0
10,000	84.5	72.9	72.9	61.3	81.5	69.9	69.9	58.3
:2,500	81.9	69.3	70.2	57.1	78.9	5\%. 3	67.2	54.1
16, 100	79.2	64.9	67.3	52.0	76.2	61.9	64.3	49.0
20,000	76.2	60.4	63.7	44.0	73.2	57.4	60.7	41.6
25,300	72.9	54.4	59.6	35.2	69.9	52.4	56.6	32.2



TABLE A-II-I.:
tamulation of epil values gor dipberent aikchaft

Alreraft:	2-Engine Piston Aircralt				1-Engine Piston Alroratt			
	( $<12,500$ lbs. Max, Gross Wt.)				(180 hp or less)			
Operation: Alrapeed: Power:	Takeofr   110 Kt .		Approach 90 Kt .		Takeor' ${ }^{\prime}$		Approach 90 Kt .	
	EPNL	dB	EP!	dB	EFN	dB	EP	dB
$\begin{gathered} \text { Diatance, } \\ \text { ft. } \end{gathered}$	Alr to Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { Ground } \end{aligned}$	Alr to ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { ground } \end{aligned}$	Air to Ground	$\begin{aligned} & \text { around } \\ & \text { to } \\ & \text { Ground } \end{aligned}$	Alr to Ground	$\begin{aligned} & \text { Ground } \\ & \text { to } \\ & \text { Ground } \end{aligned}$
200	97.6	97.6	92.2	92.2	94.6	94.6	89.2	89.?
250	96.5	90.5	91.0	91.0	93.5	93.5	88.0	88.0
315	95.3	95.3	89.8	89.8	92.3	92.3	86.8	86.8
400	94.2	94.2	88.5	88.5	91.2	91.2	85.5	85.5
500	93.0	92.8	$8 \% .2$	86.9	90.0	89.8	84.2	83.9
630	91.7	91.3	85.8	85.2	88.7	88.3	B2. 8	82,2
800	90.4	89.9	84.3	83.4	87.4	86.9	61.3	80.4
2,000	89.1	88.3	82.8	81.4	86.1	85.3	79.8	78.4
1,250	87.7	86.5	81.2	79.3	84.7	83.5	78.2	76.3
1,600	86.2	84.6	79.5	76.9	83.2	81.6	76.5	73.9
2,000	84.6	82.3	77.7	74.6	81.6	79.3	74.7	71.6
2,500	83.0	79.6	75.9	71.7	80.0	76.6	72.9	68.7
3,150	81.2	.76.3	73.6	68,3	78.2	73.3	70.6	65.3
4,000	79.4	73.0	71.3	64.4	76.4	70.0	68.3	61.4
5,000	77.4	69.5	68.8	60.0	74.4	66.5	65.8	57.0
6,300	75.4	65.9	66.3	54.9	72.4	62.9	63.3	51.9
8,000	73.2	62.1	63.7	49.5	70.2	59.1	60.7	46.5
20,000	70.8	58.1	61.0	44.1	67.8	55.1	58.0	41.1
12,500	68.2	53.8	57.8	37.5	65.2	50.8	54.8	34.5
Ié, 000	65.5	49.0	54.1	28.2	62.5	46.0	51.1	25.2
20,000	62.5	42.6	50.2	18.0	59.5	39.6	47.2	15.0
25,000	58.6	32.5	45.5	8.0	55.6	29.5	42.5	5.0



$$
\text { if } \begin{aligned}
L & =100 \text { ot } 3000^{\prime} \\
& =90 \text { of } 5500^{\prime} \\
\text { S dist } & =4610^{\prime}
\end{aligned}
$$

## figure a-i Variation in effective perceived noise levels with distance FOUR ENGINE LBPR TURBOFAN TRANSPORT AIRCRAFT-707 AND DC-8 AIRCRAFT WITH JT3D SERIES ENGINES


figure a-2 variation in effective perceived noise levels with distance FOUR ENGINE LBPR TURBOFAN TRANSPORT AIRCRAFT RETROFIT WITH LINED NACELLES-707 AND DC-8 AIRCRAFT WITH JTID SERIES ENGINES


FIGUREA-3 VARIATION IN EFFECTIVE PERCEIVED NOISE LEVELS WITH DISTANCE TWO AND THREE ENGINE LBPR TURBOFAN TRANSPORT AIRCRAFT - 737 DC-9 AND 727 AIRCRAFT WITH JTBD SERIES ENGINES


FIGURE A-4 VARIATION IN EFFECTIVE PERCEIVED NOISE LEVELS WITH DISTANCE FOUR ENGINE HBPR TURBOFAN TRANSPORT AIRCRAFT - 747 AIRCRAFT WITH JTGD SERIES ENGINES


FIGURE A-S VARIATION IN EFFECTIVE PERCEIVED NOISE LEVELS WITH DISTANCE THREE ENGINE HBPR TURBOFAN TRANSPORT AIRCRAFT - DC-IO AIRCRAFT WITH CF-6 SERIES ENGINES


Figure a-6 Variation in effective perceived noise levels with distance THREE ENGINE HBPR TURBOFAN TRANSPORT AIRCRAFT-DC-IO AIRCRAFT WITH JTBD SERIES ENGINES

figure a-7 Variation in effective perceived noise levels with distance BUSINESS JET AIRCRAFT - CESSNA CITATION WITH TWO JTISD-I TURBOFAN ENGINES


FIGURE A-8 VARIATION IN EFFECTIVE PERCEIVED NOISE LEVELS WITH DISTANCE BUSINESS JET AIRCRAFT COMMODORE JET COMMANDER II2I WITH


FIGURE A-9 VARIATION IN EFFECTIVE PERCEIVED NOISE LEVELS WITH DISTANCE dASSAULT FANJET FALCON WITH TWO CJ700-2B TURBOFAN ENGINES


FIGURE A-10 VARIATION IN EFFECTIVE PERCEIVED NOISE - BUSINESS JET AIRCRAFT GATES LEARJET 24 AND 25 WITH TWO CJ610-6 TURBOJET ENGINES

figure a-il Variation in effective perceived noise levels with distance BUSINESS JET AIRCRAFT - GRUMMAN GULFSTREAM II WITH TWO SPEY 5II-8 TURBOJET ENGINES

figure a-l2 Variation in effective perceived noise levels with distance BUSINESS JET AIRCRAFT - LOCKHEED JETSTAR I/C-140 WITH FOUR PT I2A-6A TURBOJET ENGINES
$\rightarrow$ ——


FIGURE A-13 VARIATION IN EFFECTIVE PERCEIVED NOISE LEVELS WITH DISTANCE BUSINESS JET AIRCRAFT - NORTH AMERICAN SABRE 60 WITH TWO PT12A-8 TURBOJET ENGINES

figure a-14 VARIATION IN EFFECTIVE PERCEIVED NOISE LEVELS WITH DISTANCE BUSINESS JET AIRCRAFT - NORTH AMERICAN SABRE 80 WITH TWO CJ 700-2D-2 TURBOFAN ENGINES


FIGURE A-15 VARIATION IN EFFECTIVE PERCEIVED NOISE LEVELS WITH DISTANCE FOUR ENGINE TURBOPROP TRANSPORT AIRCRAFT = LOCKHEED ELECTRA,
C 130 HERCULES


FIGURE A-16 VARIATION IN EFFECTIVE PERCEIVED NOISE LEVELS WITH DISTANCE TWO ENGINE TURBOPROP AIRCRAFT WITH DART ENGINES (F27, HS 74B)


FIGURE A-I7 VARIATION IN EFFECTIVE PERCEIVED NOISE LEVELS WITH DISTANCE TWO ENGINE TURBOPROP AIRCRAFT - DCH-6 TWIN OTTER


FIGURE A-IB VARIATION IN EFFECTIVE PERCEIVED NOISE LEVELS WITH DISTANCE TWO ENGINE PISTON TRANSPORT AIRCRAFT (MORE THAT 12,000 LBS MAX GROSS WEIGHT)


FIGURE A-19 VARIATION IN EFFECTIVE PERCEIVED NOISE LEVELS WITH DISTANCE ONE AND TWO PISTON ENGINEPROPELLER AIRCRAFT (LESS THAN
12,500 LBS MAX. GROSS WEIGHT)


[^0]:    *References are listed together at the end of the text.

[^1]:    *Briefly, air-to-ground curves are used for elevation angles (at ground positions) of greater than approximately 7 degrees. Ground-to-ground curves are used for ancles of less than approximately 4 degrees, with interpolation between curves for intermediate angles. No shielding adjustment of oncine nolse sources for multi-engine aircraft is provided in the current model.

[^2]:    *See Section III.C for further djscus:inn.

[^3]:    *The tone corrections used in calculatilne the tome corrected percelved noise levels are those given in FAR 36. The improved tone correction procedures, os SAE ARP $107 . \mathrm{L}^{5}$, have not been cmployed.

[^4]:    *Even here, the airport data serves as a check upon controlled tests where data may not have been obtained during realistic aircrar't operating conditions.

[^5]:    *In some cases, the draf't report notse data may differ from that appearing in the fitial reports.

[^6]:    *Note that these curves are 1dentirled with a particular draft report and may differ from those in the final version of the reports.

[^7]:    *Again, the curves given in final drafts of References 7 to 12 may differ from those shown in this report, thus larger differences may exist between the curves developed in this report and those given in final versions of these references.

