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NOMENCLATURE

force oscillation frequency in radisns/sec

phase of the tranafer function W(w)

the inclination of s force at the rim to the normal
force rotational frequency in rada/sec
loss factor

density

d,(8,t),7,(0,t) normel and shear stress distributions in the

boundary, (time domain}

O‘O(O,w). -ro(e,w) Fourier tronsiorm of normal and shear stress

distribution in the boundary

;oc’ _u'os, ?oc'?os modal,normal and shear stress
9T o HT, 00 T -Tocﬂ?os
A Lond consatants, equation Al.3
v Poissons ratio
w angular frequency (2wf)
N the Fourier Tranaform of the angular acceleration
at the centre of the disc
BBy the accelerations in the x,y directions at the centre of the disc
n radius of disc
Ajn'njn amplitudes of the nm'l dilastational and rotational modes, j=1,2
€11Cn dilatstionnl and rotational wave speeds
E Youngs Modulus
f freq usncy
Ti(u;) transfer inertance betwoen a normal force applied to the rim
and the acceleration at the centre in the same direction
i Y<1
I moment of inertia
Jn(z), J;(z) Bessel function of the first kind of order n, and
first derivative
kl dilatational wavenumber
k, rotational wavenumber
k; longitudinal wave plate wavenumher
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m disc mass

n circumferential mode number

P,Q normal and shear force applied to the disec rim

r,8 nlane polar co-~ordinutes

t time in secs

T(uw) tronsfer inertance between a net moment applied to the rim
angular acceleration of the centre of the disc

v diaplacements in the x and y directions
v

el e

Fourier transform of the displacements in the x and y

directions

U(ry,v(r) Fourier transform of the displacementa in the x and ¥y
directions on the 6=0 radius

Ejntvjn Fourier transform of x and y displecements, for the
n=l, for 8 =0, j=1,2,

W(m) Transfar inertance between a tangential force on the rim to

the acceleraticon in the same direction at the centre of tho diac,
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1.0 INTRODUCT ION

The moving parts of a rotating machine, are usually an assemblage

of discs, a8 in g gearbox, or a simple thick dise or cylinder, as

in an elgtric machine, The rotating disc element is acted upon by

in plane forces at the rim, which are responsible for vibration at
the shaft at the centre of the disc, Thes¢ vibrations are then
tranamitted through the bearings to tle machine casing, where thoy will
cause unwanted sound radiation or vihration transmission to further

connected structures.

The objective of this report is to consider the first part of the problem,
namely to analyse the vibration reaponse at the centre of a rotating

disc which is subjected to in-plane;normal and tangentinl forces at the rim,

Such o disc will, of course, behave as a rigid body at low frequencies,
with the acceleration at the centre in phase with force at the rim.
Howaver, to analyse the response at higher frequencies it is necessary

to considor wave motion within the disec,

The inplane vibration of an elastic solid medin arises from independent
contributions of two types of wave motion, namely dilatational waves
{which are equivnlent to acoustic pressure waves in a liquid}, and
rotational (or sheoar) waves [1,2]. The vibration analysis of the

dis¢ therefore involves two uncoupled wave equations {associated with each
wave type), expressed in plane polar co-ordinates. The general

solution to each of these equations is a summation of orthogonnl modes.
Each mode has a Bessel function variation of order n in the radial
direction and n sin nO or cos nd variation with the circumferential

direction (where n is an integer between O anda),

Several authors have worked in this field previously. In general

they analyse a staticnary disc subjected to m rotating forcing point ,
as opposed to a rotating disc and a stationary forecing point,. This
simplifies the problem by ignoring Corliolls forces, Tho same approach
is adopted here.



Eringen l3| provides general expressions for the vibration of a thick
disc or eylinder subject to dynamic forces. His approach is largely
followed in this report and his results applied to the specific
problem of a point osclllating force applied to the dise, with
normal and shear components. In references |4,5,6| thin discs
or thin annular rings are analysed and resonance frequenciea
computed, The dilatationgl waves in a thin disc¢ travel more slowly
than in a thick diac as there 18 less lateral constraint, therefore
the resonance frequencies associated with dilational wave motions
diffor slightly from those of a thick disc. The rotational waves
are the same for a thin or thick disc.

In this report the apalysis applies equally to a thin or thick
dise, but resonance frequencies and tranafer functions are

only computed for the thick disc case,

The approach adopted in this report was first to calculate the
transfer functions between normal,or tangential, forces at the

dis¢ rim aud the inplane acceleration at the centre of the diac.
Next the Fourier Transform of the excitation due to an oscillatory
rotating point force was calculated; and finally the excitation

and the transfer functions were combined to predict the response.

The greatest simplfications that arcse from the tranafer function
calculations was that only modes with a cos@ or siné circumfercntial
variation actually contribute to the inplane mcceleration of the
centre of the diasc, It was also found that a normal force acting

in the dise rim predominantly exciting dilatational wave motion,

while a tangential force mainly excites rotational wave motion.
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2.0 TRANSFER INERTANCE BETWEEN THE RIM AND THE CENTHE OF THE DISC

A complete analysis of the vibration of a disec subjeect to inplane
boundary forces is presented in Appendlx Al{which is largely

a modified verpion of reference 3 ). The resulta from that Section
wers applied to obtain an expression, for transfer inertance to the
centre of the dimc (hertance = acceleration/force}. Using a

digital computer these expreasions were applied to give numerical

data which are displayed graphically.

The analysis pssumes n thick disc, for which the dilatatimal wave speed is
greater thon for a thin disc (because of Polsscn's ratio effects). However,
the theoretical form of the results is similar for both the thin or

thick dise, the only difference belng the value of the dilational

wave number.

2.1 The Theoretical Form of the Transfer Inortances

The figure below gives the sign coavention for the analysis:
1 ¥
1

u and v are the displacements inthe x and y directions, o, and To
are the surface strespes applied to the rim i.e. they asct in the
direction of the applied forces,



The displacements at any point on tho x &xis u(ry, v(r) (in the
x and y directtons) are found by setting @ to zero in aquation
Al-15, giving

o

U = £ 0, (1
n=0 2n

Viry = & ?ncr)
n=0

from which it can be seen that the displacement st any radius r,
is the summation of modnl contributions. ¥V and u are the Fourier
Transforms of the time dependent displacements v(t) defined as

o0 =it
v =J v(t)e dt 2.2)

whore w is the angular frequency anhd t the time.

The functionjﬁén(r) and iﬁ(r) are the displacements made in the

h

x aud y directions at 8 = 0, for the n*® mode. These can be seen in

equaticn Al.5 to be related to Beasel Functions of order n, (Jn).

The displacements in the x and y dirsctions at the centre of the
disc are simply found by substituting r=0 in equation 2.1 (coefficients
in Eqguation Al.15) giving

A B
= 11 11
Vo) = - =2 . = r=0
2k1 ky
—_ _ Ay By, (2.3)
S
1 p

vhere kl and ka are the dilmatonal and rotautional wave numbers
roapectively; and All' A21 are the amplitudes of the dilational

n=l mode and Bll' le are the amplitudes of the rotational n=l mode,
{(Equation Al.14).
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Only the n=l dilational and rotatlional modes (which have a cos 6 or sin @
circumferentisl varimtion and a Jltkr) radinl variation) contribute

to the displpocement at the centre of the diame. This 1s because

the displacemant 18 proportional to the gradient of the dllat ational

mode shape and rotational mode shape, and only the n=l1 Bessel

function (Jl) has a slope at r=0, This is illustrated in the

figures below,
n=1l mode

The mode shape for (2,1)
dilatatinal or rotational
mode; 2 modal circles

{including central point),
1 modal diameter

The approx., corresponding displacement
mode shape adopts =z=(1,0) pattern
with a finite value at the centre.

The displacements u{e) and ¥(o) at the centre of the risc can be
written in terms of the applied forces at the rim Ly substituting
for All' Azl' Bll’ ond 321 in equation 2.3 with the n=1 values of
equaton Al.19, giving

D - - — —_ —_
- v(o) = H(w).nncro + W(w). am Toe

8
(2.4)

2- L - - -
W w(o) = H(w). an %5 W{w).an Tos



w8y Ckga) S11“‘1“)]

where H{w) = m L 2k1 kz
Few = m-;_v [-Nzl(kza) . Nn (kqa) }
2yup 2Ky kg

b= Nll(kla).szl(kzn) - Nzl(kzn).sll(kla)

O+ '6_08 are related to the normal forces applied in the x and y
directions and ?oc and ?os are ralated to the tangentinl forces
applied in the y and x directiong, These terms are defined in

Equation Al-30 and discussed in Section 3.

On substituting for Nll’ N21, Su and 521 from equation Al,17,
the transfer inertances from the rim to the centre of the disc

bocomes, after some rearrangenment,

1 kya, J,Ckon) = 20,(k.8)

Hw) = w2 ' 2J1

7;{:- Jl(lcla).kzu Jz(kzﬂ)'—ﬁ;: (kyn) . 205 (K, R)
- L “Rlen+ k1alika/ky) 2T (g a)-2T, (k a)
Y = ) 23 (k)

E-;-E J1(kya) Jdegaly (Kpn) = —--l-‘;n—-—' +8J,(kya)
k A+2y

where (----2-)2 = — and m = pﬂaz

1{1 i

H(w) and W(w) are the transfer inertances between a point force
on the rim ond the acceleration response in the same direction

at the centre of the disc, as defined in the figure helow

(2.6)

{2.7)
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W) = - m_u(o) v(i) =0 .0
P P _
Q=0 Q=0
P —
Wy = - 2 :(o) —u__(_o) =0
Q _ Q -
F=a0 P=o

-

Pl, Q@ are the Fourler Transforms of the applied forces to the rim

2.2 Computational Details

The transfer inertonces H(u), W(w) and T¢n) in equations 2.6, 2.7
and 2.8 were plotted out using a digital computer,
These functions are complex functions, with an imaginary

component associnted with the material damping.

The effect of the materinl damping was included by assuming that

n complex modulus of elasticity E= E{1+in), where n 1s the hysteretic
loas factor, This complex modulus of elasticity 18 responsible for a
complex wavenunhor, l_:'z calculated thus (usinpg Al.3)

k, = k(1 M oaa 2pdity)
E(l+in)



likewlise
= . An
k1 = kl(l 3 )

These values for complex wavenumbers were used as the argument
of the Beagsel TFunctions Jl(Eh), Jz(Eh) which control the
transfer inertances. The complex Bessel functions J1 and J2

are shown in Figures 1 & 2,

The oxpreasions used for the Besael Functiong in the computation are

high and low frequency assymptopic sclutions {see for example ]Bl).
The transfer functions were calculsted for values O <k2a<20 or
0 <k23 < 100. kza taken as the independent varianhle. 2048 data points

were used to cover these freguency ranges.

The transfor functions were calculated for a range of kl/k2

ratios, including those for aluminium and steel,

2.3 Discuasion of the Form of the Transfer Inertance I (u)

The normal force transfer imertance, equation 2.6, is n function

of several variables; the mass of the disc m, the rotaticnal wavenumber
kg, the Poissons Ratio v and the material less facter, n. The
significance of each of these variahles is discussed 1in the following

sections.

'(i) The mass of the Disc
H(w) normalised to the disc mass, is plotted for varicus Poisson's

Ratio values in Figures 3-8. It can be seen that ut low frequencles
when k2a €1 the inertance taks the value of a rigid mass, For
atecl Wwith a dilatational wave speed of 5700 m/s, k) /ky = .55,

a 2m dinmeter disc would behave as a rigid mass below 504 Hz.

(it) The Polssons Ratio of the Material
Figures 3-6 shaw the transfer inertance for four different

values of Poisson's ratio v, The Poiassons ratio is related to
the ratio between the dilatersl wavenumber (kl) and rotational

wavonumhor kz, for a thick disc by

8
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ke 7 2Ew (2.10)

If the disc is thin the rotational wavenumber is unaffected but
the dilataticnnl wavenumber becomes that of a thin plate, longitudinal

wave k d
P an
k 1-v
EE = = . (2.11)
2

All the results in this analysis apply to thick dises but the thin
disc results could be found using the ratio 2.1l in Equations

2.6 and 2.7,

Figure 3 displays the ﬁ(m), when only dilational waves are present
in the disc, as would occur for a material so soft in shear as to

be liquid. The dilatntional waves correspend to acoustic pressure

waves.

This function is obtained by setting K /kg* O in equation 2,6,

giving

Hw) = 3, —i— (2.12)
24}:1:\)..11(1:111)

The resonances occur when Jl“‘lu) = 0,

In Figure 3 the transfor inertance is displayed en a scule such that
klsz = .50 (the ratio for steel) which means that this graph displays
the contribution to the transfer instance of a ateel dise from the

dilatatimal waves alone,

In Figures 4,5,8 the transfer inertance is plottod for Poisson's
Ratios of O, .28 and .33 respectively. A Poisson's ratio of

.28 corresponds to steel and .33 to aluminium. Figure 5 Bhows
H(w) for a steel disc (which has both dilatatimal and rotational
wave trangmission) obtained from equation 2.6 using l{lsz = .88,



This plot is compared with the previocusly discussod case of
dilatationnl wave transmission alone (figure 3}, It can be seen
that the dlatativnal motion is responsible for the low frequency
rigid body motion (k2ﬂ~$ 1), and nlso for the overall trend.

However, indispersed hetween the dilattiunal wave resonancoes
{(dencted d) there is a tmin of approximntely equally spaced
regsonances assoclated with rotational wave motion (denoted R) .,

The steel is more mobile in rotational motion than dilatational
motion (k:'./k2 = ,55) which 18 reflected by the fact that there

are almost two rotational resonances to each dilatational resonance.
Indeed the first significant resonance of the disc is mainly due te
rotational motion and occurs when kia = 1,64 or kza = 2.79. For
a 2m steel disc of dilational wave speed 5700 m/s this would
correspond to a frequency of 1393 Hz.

In Svction 2.4 it 18 shown that the rotational resonances occur

when J’é (kza) = 0, which for kga >4, is approximately when Jl(kznwo.
The total transfer function H{(w) can therefore be regarded as the
superposition of two sets of resonant rosponses, one associnted with
dilatasional motion, the other associated with rotational motion.
Figurea 4 and 6 show H(w) for two different Polsson's ratios v = O
and v = .33 respectively. It can be reen the kza value associnted
with rotational motion resonances are almost indepondent at
Poisson’'s Ratio, as iz clenarly illustrated in Table 1 and Figure 7,
This is of course because the values are plotted as a function of
kza. The actual rotational wave resonance frequencles decrease with -

Poisson's ratle according to equation Al.5,

Cn -
f= -51-;-' (kgyn) where C_ = / B S (2.13)
<V 2p014v)

kz is constant

10



However, 1t is seen in Figures 4,6 and 7 that the dilaticnal
vive resonance frequencies increase relative to those associnted

with rotational motion, with increasing Pelssons Ratio.

The resonance frequencies are given in Table 1 for various
Polasons Ratios, although it mumt be stressed sgain that these
refere to thick disca, For thin discs the resonance frequencies
are tabulated in Table 2, which are taken from [4].

The precise dilational or rotational mode shapes corresponding with
resonance frequency in Table 1 have not heen calculated, but the
nunber of nodal c¢ircules (m) and nodal diametors (n) is indicated
in Figure 7., All modes which contribute to the displacement of the
centre have only one nodal diameter ip the dllational or rotational
mode shape as discussed in Section 2,1,

Figure 9 shows ﬁ(m) for a steel disc (v = ,33), loas factor .02,
plotted for O <k2a <100, from which it can be seen that the damping
hogvily attonuates the contyibution from the rotational waves

leaving only the effect of the dilatotimal waves. Resonance frequencies
cccuring when Jl(kla) = 0, Note that the modes are evenly excited,

the centre of the disc always belng an antinode for these modea.

2,4 The form of the transfer inertance W(y__}

W(w) the transfer inertance hetween a peint tangentianl farce at the
rim of the dise and the acceleration responge in the same direction
at the centire of the disc is given in Equatlon 2.7. This squation
is a function of the disc mass, the Polssons Ratio and the damping,
is dipcussed inthe following paragraphs,

(i) The Disc Masa
Ww} and H(w) are plotted together in Figure 15, a comparison
reveals that at low frequencies where laa gl they both take

A

the game value of , the lnertance of a rigid mass,

11



(i1) The Effect of Poissans Ratio
The resonance frequencies of the W(w) function and the corresponding

mode shapes are of course the same as those discussed previously
for the ii{w) function (Table 1, Flpure 7). However, the degreo
of excitation of varicus modes is very different for the two functions,

The W(w) function is dominated by the rotational wave motion, wherons

the H(w) function iy dominated by the dilatatbnal wave motion.

The dominnnce of the rotational wavo motion over the dilatational
wave motlon 1s clearly seen in Figures 10-14. Figure 10 displays
W(w) when the material is very soft in shear, For the computation

it was chosen that
kl/kz = 0,01

which is equivalent to v -+ ,5, For this case the rotational wave
resonances displayed occur at much lower irequencies than the

resonnnces associated with dilatationnl wave behaviour. Figure l0
is therefore the transfer inertance W(m) with no dilatational wave

contribution.

However, inspection of Figures 11-14 reveals that for all values
of Polssons Ratio W(uw) is always dominated by the rotational wave
motlion, with behaviour closely resembling that of Figure 10,

A suitable spproximation with which to describe the rotational
wave motion contribution to W(m) ia obtained by setting kl/k,,=0.

Under this condition Equation 2.7 becomes

L 205Cka0) - (kya)?/2

Wiw)= =, (2.14)

kya (T} (kpa))

where
t 2
Jztkznj = Jl(kza) - -E;- Jz(kza) .

12
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This function 1s displayed in Fipure 10, The rotational wave

reaonances occur when Jé(kzu) = 0. A further approximation can be

made if k,n>>1, then W(w) becomes
Tw) = 2 ———— (2.15)
m

2
'E;E Jl (kyn)

The equation is aimilar to the approximation for Hw) in Equation 2,12,

Figure 15 compsres B{w) and W{w) for s ateel disc with a loss factor
of 0.02., The two functions assume their simpplified forma

{Equntions 2.12 and 2.15) for kza »>20, It can be seen also that
W{w) haa almost twice as many resonances as H(w) and is usually

at least twice as large as F(w). This reflects the fact that ‘2.'.12

vibration at the centre of a disc is upually at leugt "tw:lce a8

sansitive to tangential forcos applied to the rim 08 compared to

normal forces applied to the rim.

2.5 The form of the tronsfer inertance T(w)

The rotation -15 at the centro of the disc can be deduced by

sotting r=0 in Equation Al.14. Only the n=0 modes have any contribution
at r=0, as all Besgel Functions of the first kind, apart from Jo,

are zero nt the origin, The rotation of thea centre therefore Luwcomes

¢ = By, (2.18)

which on substitution for B from equation Al.9 gives

i0
—_ 1
§o= i (2.17)
where Too is proportionnl to the tangential force applied tn the

riin (see Equation 3.18). On substituting for iﬂ (from equation Al.17)

and performing some manipulation,

15



w2 P o= Ty, T a%y (2.18)
ac

-1 .
8
¢ rz—n')z . Jz(kzn)

|

T(w) =

whem I = mazfz,tho moment of inertia area of the disc about the
centre. ?{w) is the transfer inertance between a unit moment
applied to the disc rim, and the angular acceleration at the
centre. At low frequencles T(w) = -i—'as seen in Pigure 16,
The resonances of the n=0 modes occur when Jz(kza) = 0, and
therefore occur at different frequencies from the resonances in

the ﬁ(w)ﬁ\'(m) transfer inertances,

These rescnant frequencies are the same for a thin or a thick

disc as there is no dlatatimal wave dependence.

In Figure 17 the transfer function -'.i"(w) is plotted O <k2n <100,
the high frequency value becomes large compared to H(w) or W{w)
ad 1t has a (kza)?' dependonce (Equation 2,.1B) as compared to g
kza dependence (Equation 2,8, 2.7).

14
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3.0 THE EXCITATION FUNCTICN

Section 2.] was a derivation of the response of the centre of

the dise in terms of: the point transfer functions ﬁlm), Wkw)
and'TUu) (between the centre and poilnt forces on the disc rim),
and the froquency dependent stress distributions Eoc(m), EOE(N)
Todw) and T () acting over the disc rim. Tho form of H(v), W(w)
and T(w) was discussed in Sections 2,2 - 2.4 and it pnow remains to

consider the form of the stress distributiona %0c'%egTac! Tos in this

The anhnlysis concentrates onh the specific cm of a point force
oscillating at o rads/sec which rotates the disc at I rads/sec.

However, the same procedures could be applied to more general

stress distribution.

The Stress functions o ., Gy, Ty, M@ T, wap found to be
dependent upon the number of wavelengtha 'n' in the circumferential
disc mede shape, thorafore as an introduction the simplestome of
an oscillatory rotating forca acting upon a rigid disc is considered
firat (ns the motion ia in phase over the whole body),

3.1 The Excitation Function of an Oscillatory Rotating Force
acting upon a rigid disc

P cosat

N
,i/,/ 1 1 rads/see
TSN D

Tho force P cosat rotntes the disc at § rads/sec, Redgolving

the force into x and y coordinates gives

Fx = P cosat, cosfit
(3.1)

Fy = P cosat,ainQt

16

section,
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tThese two forces can be combined using a vectorial notation
by defuting g unlt vector in the y direction as i, whers
™
i=e2, i,e,
F(t) = F, +iFy = P cosat.o??® (3.2)
Equation 3.2 ia therefore a complete descripticon of the magnitude
and direction of the force at any time, the 1 term ia not merely

a mathematical device but has a physical meaning,

A Fourier Transform operation performed upen Equatien 3.2, is

defined
. -iut
Flw) = F(t)e dt (3.3)

-lut
where ¢ can be regnrded as a vector rotating in a clockwise

direction. On substitution of equation 3.2 into equation 3.3 and

performing the intogral by moeans of the identity
-]

J e 194t = 99 6w (3.4)
-
the Foﬁricr Transform of the excitation bhecomes

F(uw) = Pr |§(u-f+®)) + 8(w+(a-2))] (3.5)

which 18 purely reasl, hinting at its physical interpretation.
Equation 3.5 dispiayed in graphical form is shown below

P7 F(w) P
- w
Y oaep 0 0+f
clockwise anticlockwige

The Fourlier Transform reveals that the excitation function in
Equation 3.2 can be regarded as the superposition of two forces

of constant magnitude, one spinning anti-clockwise (w positive)

16
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vith frequency a+fl rads/sec and the other spinning clockwise

{w negative) with frequency o~fl rada/sec,

Therefore this particular application of Fourier Transforms provides

a physical interpretation to negative frequency.

The acceleration response of the dis¢ is simply found by multiplying
'f(m) by the mass inertance —;'I-.

Tt = . Fw (3.6)

by performing the inverse Fourler Transforms, given as

(L) = -;?r aquy.e t dt,

-
the acceleration in the tite demain sipply becomes

aey = 2. cos at.e 0t 3.7

as night be oxpected.

It must bo noted that this approach i8 only possible when the
disc i symmetrical and the transfer function % is identical
in the x and y dirsctions, and the motions in the twe directions

are uncoupled,

3.2 The Excitation Functions for the disc modes with n

circunferential wavelengths

In Section 3,1 only rigid body motion was considerod, however
it is the intention here to find the excitation level of disc

modoa which have n wavelengths around the circumference. For

17
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this analysis it 18 not sufficient to define the net force acting
on the disc (1.e. P in Section 3,1) but the stress diastribution

over the surface must be stated.

}

A genercl normal stress distribution £(8) rotating the disc at

i rods/aec ond varying in magnitude ot o rade/sec could be written us
Uo(eit) = f£(8-0t). cosnt
0 @-{it< 2 q

However only a point forco shall be conpidered here, although

the pame analysis could enually be applied to other stress distributions.
Having sadd thiz, it will become clear later that 1f only the vibration
of the centre of the disc is sought then only the net force is

required, rather than the precise stress distribution.

Only normal forces will be considered ln this unalysis, but the
derived exprossions will be equally applicable to the shear forces.

For u point force P cosct acting normal to the disc rim, and rotating
at {I rads/dec, the stress distribution around the disc rim can be

represented by

o

ao(a,t) = & .cosat LG {B~41t) (3.8)

0 <b-1lt<2nw

18
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where 6¢0-ft) is repeated at 21 intervals of (6-0t). The periodically

applied &§(@-0t) function cen be represented by a Feurier series,

thus
0 6l
fre-Nt)y = a+ E a, cosn(@-ft)+ I bnsinn(e-ﬂt) (3.9)
n=l n=1
where 1 v 1
8= o7 J d(e-Rt)d(e-~tt) = o7
-
Jﬂ'
_1 S |
a, =% . ¢(e-ft) cosn(B-at) . d(8-hit) = 7
, 7
b, =7 j § (9~fit)sinn(e~§it) .d(8-ft), = 0O
-1
Qr .
§(e-0t) = - +1 I cosn(e-9t) (3.10)
7t . .
n=l

Therefore the applled stress can be written as the product of cosine .

functions -

0,(8,t) = I cosat(d+ I cosn(e-ft) (3.11)
n=1 -

which using the cosine addition rule becomes
p (]
00(9,1:) T ——— [cosuti-ﬂ I cos((a+nfl)t-n®)+cos ( (a-nYPt +n9)] (3.12)
2am n=l
By inspoction of the argument of the cosine terms it cen be seen
that for each mode number n, two cos né circumforential stress
distributions occur simultaneously; one rotates anti~clockwise at r/n+{
rade/sec, and the other rotates clockwlse at a/n-fl rads/sec, For n=0

the disc is subjected to a uniform pressure over the whole surface.
Equation 3.12 can be converted into the frequency domain by taking the

Fourler Transforms defined in Equation 3.3, which (using identity 3.4)

glves
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30(9,14) = -g-;{ Kuw-a)+6 (w+a)

oo in@
+ I a [6(w-u+nn)+6(m+u+nﬂ)]

o3
+I e M0 [fwra-ny + S(u-a-n2)] } (3,13
n=1
This function is the boundary strese appllied in the first of
equations Al.16 and Equation Al-18, and it was shown that the
particular stress functions o ond g acting in the x and y

oc
directione can’'be found by applylug equations Al.20, thus

2n
%0 & 7"]1 . Eo (¢,w) cosng do
2 (3.14)
Tos™ %- j 30 (8,w} sin n@ de . -
o

A neater representation, 1s to use the 1 vector to indicate that
the stress ¢__ is in the vertical direction, and thus the stress

o8
functionscan be combined vectorally as
L P 1no
aoc + 1003 = T co(a,m) e de ¢3.15)
o

By substituting for Eo(e,m) (Equation 3.13) into 3.15 and performing
the integration using equation 3.4, the streass function cocﬂaos for
the mode with n circumferential wavelenpgths becomes
o +a_ = Lfs(wiarn)+8w-a~ ni)] (3.16)
oc o8 A ¢

n=0 + «

The interpretation of this is seen in the flgure belnw

20
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0123485 n 0123456 n
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P |n0i0 P
-y by araa
a o o Hw
clockwine anticlockwine

(1) It can be seen that each modes 18 excited equally by the
atress of magnitude -E-.

(1i) At each excitation frequency o, and excitation rotation speed D
and for each modenumber n, the disc is excited simultanoously by

two atress distributions each with a spacinl dependence of cos ne,
One stress distribution rotates anticlockwise at o/n+l rads/sac and

the other rotatea clockwise at o/n-fl rnda/sec, as shown below,

excitation excitation
frequency “\\‘ ::Sg;;ency

=a+nf NN

) nte na4 \> '/% .
/

These two rotating modes are sascclated with,in a statlonary plane

of reference, two frequencies;a+nil and a-nf] respectively,

(111) ¥When R i8 zero Lhe two stress diatributions associated
wih the nth
The superposition of these two distribution results in a statlonary

mode rotates in opposite directions at the same frequency.

or standing wave form, as 18 normally associated with vibratinn

of static atructures,
21



{(iv) If the excitation frequency o is =zereo, i.e. a constant

rotating force 1s applied, then the nm'l mode is excited only in a
anticlockwige direction at a 8peod of nf! rads/scc with an associated
fraquancy of n{l rads/sec,

(v) For the annlysis of the vibration at the centre of the disc

only the n=1 mode contributes. The excitation function is

o (u) = 0 +io =-§ [6 (wa-R) +8 (w-o-m) ] (3.17

norma)l force loading. Likewige the shear force excitation ia
9 - -a-
Tolwy = Toc-ri-ros = a[ﬁ(w«m 1) + &(u~a R)] (3.18)
where Q is the shear forco applied at the same point as P.

The vibration at the centre of the disc is derived from the net
forco applied to the n=1 mode, which ia the net force applied
to the dise, 88 can be sgeen from Equation 3.14. Therefore

. | the term P and Q@ inequaticns 3,17 and 3.18 refer generally to
the net normal and shear force applied to the disc, irrespective

of the load distribution,
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4.0 THE ACCELERATION RESPONSE AT THE CENTRE OF TilE DISC

In Equation 2.4 the Fourier Transform of the acceleration at tho
centre of the disc in the x and y directions is written as

De = - —_— —_
a, = -u'y = H(w).am. 0+ F(W.am3 (4.1)

Y 5
_ P = - — —

8, = -uiu= H(uw) .am. Uoc - W(w). aw Tos

Hovevor, bocause of the Eymmotry of the disc in the x and y directions
the accelerastions in the x and y directions can bs combinad

vectorinlly thus

o, +i ay (4.2)

a(w)
il

where 1 18 o 2, A unit vector in the y direction; o w and _'fus

ac’ “os' Toe
can likewisc be defined in the manner of equation 3.17 and 3.18 as

T (w) = °0,_+10 (4.3)

[+] oc o3

To(m) = Tou + “oa

then ofquation 4.1 can be exhressed as

Blw) = aw.ﬁ'(u).?o + iaTW(w) .7, (1.4)

The acceleration in the mame instantaneous direction as the force
given by Re{a(w)}. While the acceleratien leading the fwrce by 127-

iz given as _
Im {alw)} (4,5)

The Fourier Transform of the acceleration vector _n'(m), reaulting
from the rotating oscillatory drces P(normal) and Q(shear), is
found by mubstituting for 3.0 and ?o (from equations 3.17 and
3.14) into equation 4.4 givipg

23
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afw) = (n P.E(m)ﬂﬂQW(m))(&(mw-—ﬂ) +§( w-a=R)). (4.6)

The response in the time domain is found by tsking the inverse

Fourler transform of equation 4.6 1.e.

w

o 1 - 1wt
a(t) = o f a(w)e dw 4.7
or _ o _ _ 1ot
a(t) =§I (P.HC)+1Q. W( ) . ) . (S ta~)+ (m'a"ﬂjﬁ dw (4.8)

which on performing the integral gilves

_ _ ~i(oa=Nt
a(t) = 4 (PH(~a+Q)+iQW(~a+n))e (4.9)

_ _ i({a+9.) t
+% (P H{a+D+1iQW(at+M)e

It is posaible to procede further by moking the following simplication.
H(w) and W(w) are complex functions of (w) having both a real and
imaginary component. For physical structures the real component of
the inertance 1s symmetrical about the w= O point, while the imaginary
compenent of inertance 18 assymetrical about w=0. Therefore the

simple relationship exists that
H*(w) = H(-w) (4.10)

whera * denotes the conplex conjugeate.

On making thia substitution into Equation 4.9 the complex acceleration

in the time domain, namely
at) = a,(t) + 1 ag(t) (4.11)

becomes
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- — _ ~L{a-Mt
a(t) =} (p.u'(a-n)qu*(u»m)e

_ _ i(a+)t
+f (P.H¢a+) + 1QW(a+0))e

(4.12)

1f an dinclined force ¥ acting on the rim has normal and shear force

copponents as shown below

iqQ

|

P and Q can be replaced by

PeF cos @
Q=F sin @

(4.13)

4.1 Specinl Cases of the Reaponse at the Centra of the Disc

The gone_ral expression for the response of the dizsc can be simplified

for n few special casen:

(1) at low frequencies when kza< 1 the disc moves as n rigid body,

and H{w), H*(w), W(w) and W(w) are all equal to -;:-'l-, a8 in Figure 15
between points a and b, The response at the centre of the disc to

a force inclined at @ radians fyom the normel is given from

oquntions 4,12 and 4.13 as

- 1(P+0t)
a(t) = w° coatt

where the appliad force vector was

Fai (p+aat) . cosat

25
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The response in the x and y directions ore modulated cosine waves

- F
ax(t) = o con(@+it) cosat
{4.186)

ny(t) = % sin(@+0t) cosct

as shown in the figure below

coa(pt@t)
~

- ~cosnt

The acceleration tragectory on the x~y plane of an oacilloscope

screen would be, for a=8,

(11) Botweon points b and ¢ in Figure 15 it can be Been that
thae shearing force transfer inertance W(w) 18 much greater
; than the direct force transfer inertance. The transfer
l function W{w) chenges only gradually with fraquency, therefore
j W) Wa=0) for 4>>0. Also for frequencies outside the
E regonant regions W)= W) = |W (w)f» Therefore in this

; region the response takes the form
i _ _ 10t I
a(t) = Fain@.|W@)| .e con at (4. 1T

! where the force vector was F ei(ntw)cosnt
26
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The response therefore leads the force by an angle of %-- g,
For the alternative case when ﬁ(m)>> W(m) the response would be

T) = T cos @, [fw |6 conat, (4.18)

indicating a lag of @ behind the force vector In both cases
the responses would take the form of the previous two figures,

(i} When the excitation frequency a+f} is equal, or very close

to a resonance frequency of the disc (for example point d, Figure 15)
only the terms contailning o+l in expression 4.12 nre strongly
excitod, The acceleration response then takes the form

_ F _ - 1(a+)t
B(t)s 7 (coag . H{a+) + imin@.W(x+R))e

If it ia now assumod that H{a+D) is peglected, on account of its
relatively small aize; the acceleration response can now be written
an

i
1(B+(at) t+ )

(419)

a(t)= -g, Wia+)| e

whera 18
| Wasl)|e = Weael)

This ia B vector rotating in the snti-clockwise direction at o+l
radians /sec, i,e, the reoponse, is due to the dise, in an n=1

mode shape spinning at o+l rads/sec, as shown helow

at* resonance
1
&m md:;/5EG

arbiF
of cenhe ~ ~
rir)

/
/

above e g —
rescranee. \

N obelew resonante.
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The precise phase depends strongly on B, which changes rapidly
through the resonance region. The acceleration tragectory

displayed in the x,y axis of an oscllloscope is a circle.

a+il rads/sec

¥hen the other gxcitation frequency «-0 coincides with the resonance
frequency there 1s a similar result except that the npcceleration

vector rotates in the clockwlse direction.

4.2 Response at the Centre of the Rotuting Disc

All the previcus analyses have been concerned with n stationary

disc subject to a rotating force, FHowever, the initial jintention

of the work was to solve the vibraton of a rotating diasc subject to
a statlonary oscillating force. The general solution is enslly
found by multiplying equation 4.12 by e"mt which effectively applies

a clockwise rotation to the disc., The sclution becomes

(L) =4 (P T (oa-R) 17" (e-1) )8 10t (4.20)

+ (P.H(a+R) QR (a+a) et

ig

to a forecing function Fe " cosat.

(1) In the mass controlled region the responsa 1is

ip

e .cosgt.

2

w{t)=

28
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(ii) In the non-resonant region, (see Equation 4.18) the response

is
) =—§f aing |W(w)|. ot

T
z

.
"

zosat

..*!“ h e

(411) In the rebonant region (see Equation 4,18) the response it

?(t): -g[ W(nm)Ie

or  a(t) -g |'V_f(u.-n){e

u+ﬂ=mn\

A¢

L(:}FDHSE’-

1(B+at+ -g-)

1(-B-at +3)

7

(a+Q = resonance frequency, w)

where W(w) = [w|e13

foree

29
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5.0 CONCLUSIONS
The roesults can be summarised into three sections, namely;
the transfer functions, the excitation, the response at the centre

of the disec due te the oscillating rotating force.

5.1 The Transfer Function

(1) The Transfer Function -ﬁ(m) between a normal force and the
ncceleration response in the same direction, at the centre of the disc
is largely governed by the dilatationalwave motion, When kzn <1 the
disc behaves as o rigid mass. Resonances associated with the

dilatatiomd wave motion occur approximately when Jl(kln) = 0,

(i1) The transafer function W(m) between a tangentinl force and
the acceleration respongse in the same direction at the centre of the
disc i8 dominated by the rotational wave transmission., Thig is
responaible for the mass-like behaviour for kpa<1. Resonances

associated with rotational wave motion occur approximately when

J1 (lc2 a)=0.

¢i11) ‘The W(w) and E(m) transfer functions are comprised only of
Basgel Functiong of order one (n=1l) (which are asscciated with

cos8@ or 8in@ circumferential mode shape).

(iv) The first resonance frequancy arises from rotational

wave motion, when k,av 2.8 (for steel),

{v) In general,vibration transmission to the centre of the disc
is greater from a tangential force than from a normanl force (i.e.

(W(w) tends to he greater than H(w)).
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(vi) Angular ncceleration at the centrs of the disc 13 solely
cnused by n=0 rotaticnal modes of vibration (those which have no
variation in the © direction)., ¥hen k2n<1 the angular mccoleration
is controlled only by the disc noment of inertian, Resonances

occur approximately when .J’2 (kzn) = 0,

5.2 The Excitatlon Funetion

(1) A point force which oscillates at frequency m‘:ada/sec

and rotates the disc in an onticlockwisme direction of {irads/sec
excltes each mode at 2 different frequencies. A mode with n wavelengths
in the circumferentinl direction 18 excited by an enticlockwise
rotating stress distribution at R+o/mrads/sec, and by a clockwise
stress distribution at OQ-o/nrads/sec. Each mode is excited at the

same level by a point force.

{id The motion at the centre of the disc is only dependent upon
the net force acting in the disc rim, and is independent of the load
distribution,

5,3 The Rgaponse at the Centre of the Disc

(1) TFor a rotating disc and a atationary oscillating force

the accoleratlon at the centre of the diac is necessarily in phase
with the npplicd force (whataver the direction} at the rim of the
disc, when the disc moves as a rigid body (kzn <1),

(11) When kya >1 , 1f an inclined force is applied to the disc rim,
the response at the centre of the disc will move in a different
direction from the applied force, The response will however, be a
vibration in a single direction provided a resonance is not excited.
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(iii) If the excltation frequency n+{t rads/sec coinecides with
n resonance froquency, the centre of the disc will adopt an
anticlockwise circling motion at o rads/sec. Likewlse if the
excitation frequency a-R rads/sec colncides with a resonance
frequency the centre of the disc will adopt a eclockwise circling

motion of o rads/dec.
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APDENDIX Al: Formulation of the Problenm

Al.l The dynamic analyses of isotroplc, homogeneous two
dimensional solids 1a best performed in terms of 'dilatation’ E
{or volume expansion) st a peint and the 'rotation'?at a point,

Expressed in terms of cartesian co-ordinates for the element

balow Y
EX
Y &y
v
o X
e{x t) (the total element strain) =El_u_+i_3__g
¥y ota emen a % iy
" v du
¥{x,¥,t) (the sverage element rotation) = 5-—; - iy

Alternntively in plane polar coordinstes, the displacoments

J Ay
Br(ru)+ Ja

1
e(r,8,t) = .

(AL, 1)

21 a_ Ju
v(ir,o,t) =57 | al_(:'1.-) - 38

u(r,8,t) v(r,o,t)

where u nnd v are the displacements in the r apd ® directions,

as geen in the figure below

™
-
" e
Figure Al,1l
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The Hookes Law relastionship on o plane polar element is given

IRet 1 p288| o8

du _pdu 3 v,
S M AT Tt rae W aT & (A1-2)
g = Ag+ 2 .‘i (av )
1) . 5""9 + u

where ) and W are defined in |1,p11,497i for s thick disc, as

1 = VE , U= E , (A1.3)
(14v) (1-2V) 2(1+V)

i is the material shear modulus; however for a thin disc

W E
Ve —E.  us=

-v?) 2¢1+V)

From the dynamic equilibrium of a plame polar element 1t can be shown
[1 p288] that the oguations of motion are

2
de 2udy 3 “u
(A+21). - === =Py
3T rd8 d¢ (AL, 4)
2
1 d€ i 3%
(A+2u)=. + 2 — = p e
r 98 3r atz

where p is the material density.

Eliminatinpu and v using equations Al.l and Al.4 leads to the
two uncoupled wave eguations for dilgationd and rotational motion,

Vze = =+ a_ez Cf = (A+23u)/p
Z av
(AL.5)
2.,
v o= L L c2 = o
l.‘-2 at

a5



where Cl and C, are the dilatstional and rotationnl wavespoeds nnd Vz

2
iz the Laplaclian operator in plane polar coordinates i.e,

2 2

2_ @ 1 2 12
v._....é...*..;._...'.-z:._.é-
ar ar r° a3e

The solution for the disc motion which conforms to the wave
equations 115 must alpo satisfy the bhoundary conditions at the rim

of the disc i.e,

a,.(8,8,t) = 0 (8,t), 6 o(2,0,£) = 7,(8,1) (Al.6)

wherte 9 and T, Bre the normal stress distributions and the shearing
stress distributions applied to the rim in the direction indicated
in Figure Al. It is8 assumed that no 690 streas 1s applied.

Al.2 The Solution

If it ip assuned that the time and space dependence of Jand ¢
are separable functions, 1.e. Yy and € each take the farm A(r,8), B(t)
then Fourier Transforms may be taken at both sides of equation Al.B.

giving
2 2. -
(v +}:1)e=0 k1=w/c1
(AL, T)
L2 -
v ady T =0 Ky = /e,
where the  denotes the Fourier Transform, defined asB
— =i ut
€ (W) = c{t)e dt (Al.8)
J e
kl and lc2 are the wave numbers assoclated with the dilatrtional waves

and the rotational waves.
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It i6 now assumed that ¢ and .1; are each the product of two
separable functions, one of r dependence and one of © dependence
i.e,

€ = W(r).Q(6) (A1.9)
Subatitution of Al.9 into Equation Al.7 resulth in the governing

equations for the 8 and r dependence:

2
43 . n’g =0 n=0,1,2,3... (Al.10)
do
and
2 a2 aw 2 2
¥ S bk P~ o+ ((K,D)°-nT) W= O (Al.11)
o2 dr 1

Equation Al,10 is a second order differential equation which has a
golution of the form

Q(8) = C cosne+Dsin n6 (Al.12)

where C aud D are constants, Equation Al.1ll is Bessel's equation

of order n which have solutions
wn(klr) = Can(klr) + Dn‘ln(klr) (Al.13)

whera Jn and ¥, are Bessel functions of the first and second kind,
(’.7!1 and Dn are consatants. Yn goes to infinity when k1r+0 {at the
centre of the disc) therefors Dn=0 for this problem.

The general solution for the dilatation and the rotation is found
by substituting equation Al,13 and Al.12 into Al,Y and taking the

sum of the n solutions i.e.

— o
[ nio (Amsinne + A2ncos nea) Jn(klr)
(Al.14)

—_ o
%= (Bmcoana - an ainng ) Jn(kzr)
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Ao Ap 1By By, nTe constants which are determined by the force

distribution on the rim of the disc. Note that n cos n@ or sin ng

variation around the digc i3 associlated wlth a Jn radial variation,

It can be seen from equations Al,14 that the dilatation at any peint

on the disc is entirely independent of the rotation. Illowever the in

plane displacements u,v, are a combination of dilzation and rotation
effects and can be found [1[ by substituting Al.14 inte Al.1l (after
taking Fourder Transforms of Al.l) and solving the resulting

simultancous partial differentinl equations to give:

u{x) = I Uln(r) 5in no + Uzn(r) cos no

n=0 Al.15
vy = I V., (r) cos n6 - V, (r) sin ne
n=0
whare

-1 _ 1 on .

=T U () = Ay - TG + By 5" Iy (pT)
1 (kyr)

sl = Ay T T (k)R . 3, (kT

3 (i, 7) (kg )

j=1,2.

The stresses at any point in the disc can be found by substituting

equalions AL.i5 and Al.1l4 into Al.2 to obtain,
Tpph o[ ]
Upp 2u}= :;0 Alann(klr)+B1nN2n(k2r) sin ne +
A, N Gk ryeB, N, (ky7) ] cos n@
Fral2 =
o2 )= ni ) (A8, K 748, 8, (K1) ] cos ne

~[ag, 8, (e r) 4B, 8, (k)] sin 0o
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{Al.16)

- m cont
P nin (AL, Tin %yr) + By Ty (ko] sin né +

+ [AgyT 007> + By Ty (k,r)] cos ne

where
]
Ny (kyr) = (/21 3 (k1) = 3 (kyr)

Zn
(kzr)

v
"In

1]

"2:1“‘2") ) oJy (kar) - (ky1)

(kz r)

n T
= T Ty = = T (B )

8, (k1)
1
1n (%, 1) L

(AL, 17)

2!12
2
)

Spp(Kgr) = (1- ) (kgr) + T‘-E; 3, (k)

(kar

T, (kiT) = (e).d (K N A B

(kT = (55 -J, Uy 1) 7 Jn - o5 9, )
(klr) 1

Tzn(l‘z"’ = —Nzn (kzr)

1n* A2n'

for a complete golution, and these are found by equating the Fourier

The constants A Bln’ and an are all that are now required

Transform of the boundary conditions (Equucion Al.8) to the
equations Al.16 namely

0,(0,u) =0,.(a,8,0), T (6,0) = U,g(2,0,u) (AL1B)
and multiplying both sides of equations Al.16 by cos n® und sin né@

and integrating over a range 0 <8 <21 This procedure identifies

the individual constants as

a9



A, = [2un) 7[5, (g Tag = Nap(kp) T, ]

w = 217t [-5,, ¢k, ) Tps * Ny T

=
1

. w] - —
| Ay = [2up ) 7%, [-85,, (k) Ty * Nop (kye) |
!
}
-1 - — (Al.19)

! By, = [2un,] 70 [ -8, ek S " Nl 7]
!
! n=1,2.35,...,
i Ajo =3 IAJnI n=0 B.:lo = i|B;1n|n=0 ) =1,2
i
! - -
1: Dn = Hln (kla) SZn(kza) Nzn(kza) Sln(kla)
l

where 2n

— _ -J-_ —
gnc = 3 cro(e,m) cos ne do
? I (Al,20)
I 27
: : g =2 T (8,) #in n@ d@
o8 [+}
o]
T and T are similarly defined.
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Ry | 708 .666 .612 56 .503 ,403 0
AL S 1 .2 .28 .33 4 .5 Moda
2.48 2.58 | 2.69 2.79 | 2.85 | 2,94 | 3.05 1.1
5.01 5.31 | 5.78 6.318 | 8,54 | | 1.1
’ 6.74 8.7 | 6.80 6.99 | 3.531_} 6.8 ' 6.71 2.1
? 9.60 9.87 | r ? 2.1
10,09 }o:gz_} 9.94 9.96 ! 9.97 ] p.21 | .07 | 34
i | 11.28 ; 12.56 10,03 r
13,15 13,15 | 13.17 | 13,20 13.13 | 1a.14 | 13.37 | 4.1
;' 14.28 | 15.14 | 16,27 ' | 13.82 |
16.34 16. 34 ys.qs_f 16,34 ' 16.37 | 16.32 I 16.34 ) 8.l
| 18.57 | 19.49 18.36 17.29 ! !
; 18,52 19_._;1(5 19.50 | 10.52 | 19.49 9,51 | 10.51 | 6.1
| [

TABLE 1: k,a a8 a function of Poissons ratio for the

2
(m,1)modes of dilmdiomal and rotation of a thick disc
{cylindsr)
- 2p (1+v)
k, 2nt / B
k1 = 12y
ka / Sagy

(m,1) = rotational mode

(m,1) = dilatational mode
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0.25 0.3 0.35 0.4 0,45 0,5
1.662 1.617 1.578 { 1.5346 1.483 1.429
3,636 3.6281 | 3,511 3.470 3.393 3.2764
4.188 4.0474 | 3,933 3.837 3,771 3,738
6.087 5,886 5.678 9,457 5.227 4,986
46,9117 6,811 6,910 . 6.905 6.837 6.568
B.0685 7.798 7.519 ’ 7.236 7.003 6,956
g.98662 9,669 9,314 l 8,951 8,572 8,175 I
10.1415 | 10.113 |10.110  10.110 10.087 9,749
11.948 11,544 11,128 ;I l0.692 10,2541 10.129

- 2 (1+v)
k2 = 2nf /—-———E
B
kz 2

TABLE 2: (Holland i4|, Rla a8 8 function of Peissona
ratio v for the (m 1) modes of dilattion and

rotation of a thin disc
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TABLE 3: kzn for the (m,0) rotational modes of vibration

of a thin or thick diac

Mode kza
1,0 §.136
2,0 8.418
3,0 11.621
4,0 14.795
§,0 17.86

ke = 2mt /—9-——2 (1+v)
E
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FIGURE 2: Complex Bessel Function of the
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